Brzezowski Pawel, Richter Andreas S, Grimm Bernhard
Institute of Biology/Plant Physiology, Humboldt University Berlin, Philippstr.13, Building 12, D 10115 Berlin, Germany.
Institute of Biology/Plant Physiology, Humboldt University Berlin, Philippstr.13, Building 12, D 10115 Berlin, Germany.
Biochim Biophys Acta. 2015 Sep;1847(9):968-85. doi: 10.1016/j.bbabio.2015.05.007. Epub 2015 May 12.
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
四吡咯是一类大环分子,在原核生物和真核生物中具有多种结构变体和多种功能。目前关于四吡咯代谢的知识反映了该途径在不同生物界中的复杂进化、酶促步骤的结构和酶变体的复杂性,以及广泛的调控机制,这些机制确保在发育和环境条件的任何时候都能充分合成四吡咯终产物。本综述旨在突出植物和藻类中四吡咯生物合成研究的新发现。在这些光合生物的血红素和叶绿素合成过程中,谷氨酸作为核心且丰富的代谢物之一,被转化为高光反应性的四吡咯中间体。因此,几种翻译后调控机制被认为对于严格调控每个酶促步骤至关重要。最后,我们希望讨论四吡咯在逆行信号传导中的潜在作用,并指出在四吡咯生物合成中形成大分子蛋白质复合物作为确保该途径中代谢流精确调控的有效机制的前景。本文是名为“叶绿体生物发生”的特刊的一部分。