Kang Joonhee, Han Byungchan
†Department of Energy Systems Engineering, DGIST, Daegu 711-873, Republic of Korea.
‡Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Republic of Korea.
ACS Appl Mater Interfaces. 2015 Jun 3;7(21):11599-603. doi: 10.1021/acsami.5b02572. Epub 2015 May 22.
Using first-principles calculations, we study how to enhance thermal stability of high Ni compositional cathodes in Li-ion battery application. Using the archetype material LiNiO2 (LNO), we identify that ultrathin coating of Al2O3 (0001) on LNO(012) surface, which is the Li de-/intercalation channel, substantially improves the instability problem. Density functional theory calculations indicate that the Al2O3 deposits show phase transition from the corundum-type crystalline (c-Al2O3) to amorphous (a-Al2O3) structures as the number of coating layers reaches three. Ab initio molecular dynamic simulations on the LNO(012) surface coated by a-Al2O3 (about 0.88 nm) with three atomic layers oxygen gas evolution is strongly suppressed at T=400 K. We find that the underlying mechanism is the strong contacting force at the interface between LNO(012) and Al2O3 deposits, which, in turn, originated from highly ionic chemical bonding of Al and O at the interface. Furthermore, we identify that thermodynamic stability of the a-Al2O3 is even more enhanced with Li in the layer, implying that the protection for the LNO(012) surface by the coating layer is meaningful over the charging process. Our approach contributes to the design of innovative cathode materials with not only high-energy capacity but also long-term thermal and electrochemical stability applicable for a variety of electrochemical energy devices including Li-ion batteries.
通过第一性原理计算,我们研究了如何提高锂离子电池应用中高镍成分阴极的热稳定性。以典型材料LiNiO2(LNO)为例,我们发现,在作为锂脱嵌通道的LNO(012)表面上超薄包覆Al2O3(0001),可显著改善其不稳定性问题。密度泛函理论计算表明,随着包覆层数达到三层,Al2O3沉积物会从刚玉型晶体(c-Al2O3)转变为非晶态(a-Al2O3)结构。对由a-Al2O3(约0.88 nm)包覆的LNO(012)表面进行的从头算分子动力学模拟表明,在T = 400 K时,三层原子层的氧气析出受到强烈抑制。我们发现其潜在机制是LNO(012)与Al2O3沉积物之间界面处的强接触力,这又源于界面处Al和O的高离子化学键。此外,我们发现层中含有Li时,a-Al2O3的热力学稳定性会进一步增强,这意味着在充电过程中,包覆层对LNO(012)表面的保护是有意义的。我们的方法有助于设计创新的阴极材料,这些材料不仅具有高能量容量,而且具有适用于包括锂离子电池在内的各种电化学能量装置的长期热稳定性和电化学稳定性。