Sardans J, Peñuelas J
CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallés, 08193 Barcelona, Catalonia, Spain. ; CREAF, Cerdanyola del Vallés, 08193 Barcelona, Catalonia, Spain.
Glob Ecol Biogeogr. 2015 Feb 1;24(2):147-156. doi: 10.1111/geb.12231.
Phosphorus (P) tends to become limiting in aging terrestrial ecosystems, and its resorption efficiency is higher than for other elements such as nitrogen (N). We thus hypothesized that trees should store more P than those other elements such as N when tree size increases and that this process should be enhanced in slow-growing late successional trees.
Catalan forests.
We have used data from the Catalan Forest Inventory that contains field data of the P and N contents of total aboveground, foliar and woody biomasses of the diverse Mediterranean, temperate and alpine forests of Catalonia (1018 sites). We used correlation and general lineal models (GLM) to analyze the allometric relationships between nutrient contents of different aboveground biomass fractions (foliar, branches and stems) and total aboveground biomass.
Aboveground forest P content increases proportionally more than aboveground forest N content with increasing aboveground biomass. Two mechanisms underlie this. First, woody biomass increases proportionally more than foliar biomass having woody biomass higher P:N ratio than foliar biomass. Second, wood P:N ratio increases with tree size. These results are consistent with the generally higher foliar resorption of P than of N. Slow-growing species accumulate more P in total aboveground with size than fast-growing species mainly as a result of their large capacity to store P in wood.
Trees may have thus developed long-term adaptive mechanisms to store P in biomass, mainly in wood, thereby slowing the loss of P from the ecosystems, reducing its availability for competitors, and implying an increase in the P:N ratio in forest biomass with aging. This trend to accumulate more P than N with size is more accentuated in slow-growing, large, long-living species of late successional stages. This way they partly counterbalance the gradual decrease of P in the soil.
在老化的陆地生态系统中,磷(P)往往会成为限制因素,并且其再吸收效率高于氮(N)等其他元素。因此,我们推测,随着树木尺寸的增加,树木储存的磷应比氮等其他元素更多,并且这一过程在生长缓慢的晚期演替树木中应会增强。
加泰罗尼亚森林。
我们使用了加泰罗尼亚森林清查数据,其中包含加泰罗尼亚不同地中海、温带和高山森林(1018个地点)地上总生物量、叶生物量和木质生物量中磷和氮含量的实地数据。我们使用相关性和一般线性模型(GLM)来分析不同地上生物量组分(叶、枝和干)的养分含量与地上总生物量之间的异速生长关系。
随着地上生物量增加,地上森林磷含量的增加比例高于地上森林氮含量。这有两个机制。第一,木质生物量的增加比例高于叶生物量,木质生物量的磷氮比高于叶生物量。第二,木材磷氮比随树木尺寸增加。这些结果与通常叶片对磷的再吸收高于对氮的再吸收一致。生长缓慢的物种随着尺寸增加,地上总生物量中积累的磷比生长快速的物种更多,主要是因为它们在木材中储存磷的能力较强。
树木可能因此发展出长期适应机制,将磷储存在生物量中,主要是木材中,从而减缓生态系统中磷的流失,减少其对竞争者的可利用性,并意味着随着森林老化,森林生物量中磷氮比增加。随着尺寸增加,积累的磷多于氮的这种趋势在晚期演替阶段生长缓慢、体型大、寿命长的物种中更为明显。通过这种方式,它们部分抵消了土壤中磷的逐渐减少。