Suppr超能文献

作为促肾上腺皮质激素释放因子1受体拮抗剂的N(3)-苯基吡嗪酮的药效团建模与3D-QSAR研究

Pharmacophore Modelling and 3D-QSAR Studies on N(3)-Phenylpyrazinones as Corticotropin-Releasing Factor 1 Receptor Antagonists.

作者信息

Kaur Paramjit, Sharma Vikas, Kumar Vipin

机构信息

Institute of Pharmaceutical Sciences, Kurukshetra University, Haryana, Kurukshetra 136119, India.

出版信息

Int J Med Chem. 2012;2012:452325. doi: 10.1155/2012/452325. Epub 2012 May 31.

Abstract

Pharmacophore modelling-based virtual screening of compound is a ligand-based approach and is useful when the 3D structure of target is not available but a few known active compounds are known. Pharmacophore mapping studies were undertaken for a set of 50 N(3)-phenylpyrazinones possessing Corticotropin-releasing Factor 1 (CRF 1) antagonistic activity. Six point pharmacophores with two hydrogen bond acceptors, one hydrogen bond donor, two hydrophobic regions, and one aromatic ring as pharmacophoric features were developed. Amongst them the pharmacophore hypothesis AADHHR.47 yielded a statistically significant 3D-QSAR model with 0.803 as R (2) value and was considered to be the best pharmacophore hypothesis. The developed pharmacophore model was externally validated by predicting the activity of test set molecules. The squared predictive correlation coefficient of 0.91 was observed between experimental and predicted activity values of test set molecules. The geometry and features of pharmacophore were expected to be useful for the design of selective CRF 1 receptor antagonists.

摘要

基于药效团模型的化合物虚拟筛选是一种基于配体的方法,当靶点的三维结构未知但有一些已知的活性化合物时很有用。对一组具有促肾上腺皮质激素释放因子1(CRF 1)拮抗活性的50种N(3)-苯基吡嗪酮进行了药效团映射研究。开发了具有两个氢键受体、一个氢键供体、两个疏水区域和一个芳香环作为药效团特征的六点药效团。其中,药效团假设AADHHR.47产生了一个具有统计学意义的3D-QSAR模型,R(2)值为0.803,被认为是最佳的药效团假设。通过预测测试集分子的活性对所开发的药效团模型进行了外部验证。在测试集分子的实验活性值和预测活性值之间观察到平方预测相关系数为0.91。预计药效团的几何形状和特征将有助于设计选择性CRF 1受体拮抗剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3976/4423530/9fce50567d57/IJMC2012-452325.001.jpg

相似文献

4
3D-QSAR study of corticotropin-releasing factor 1 antagonists and pharmacophore-based drug design.
Neurochem Int. 2010 Jan;56(1):107-17. doi: 10.1016/j.neuint.2009.09.008. Epub 2009 Sep 24.
5
Pharmacophore modelling and atom-based 3D-QSAR studies on N-methyl pyrimidones as HIV-1 integrase inhibitors.
J Enzyme Inhib Med Chem. 2012 Jun;27(3):339-47. doi: 10.3109/14756366.2011.590803. Epub 2011 Jun 24.
7
Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors.
J Biomol Struct Dyn. 2018 Sep;36(12):3218-3230. doi: 10.1080/07391102.2017.1384401. Epub 2017 Oct 11.
8
Pharmacophore filtering and 3D-QSAR in the discovery of new JAK2 inhibitors.
J Mol Graph Model. 2011 Sep;30:186-97. doi: 10.1016/j.jmgm.2011.07.004. Epub 2011 Jul 22.

本文引用的文献

1
Progress in corticotropin-releasing factor-1 antagonist development.
Drug Discov Today. 2010 May;15(9-10):371-83. doi: 10.1016/j.drudis.2010.02.011. Epub 2010 Mar 3.
2
Synthesis and structure-activity relationships of N3-pyridylpyrazinones as corticotropin-releasing factor-1 (CRF1) receptor antagonists.
Bioorg Med Chem Lett. 2010 Mar 15;20(6):1890-4. doi: 10.1016/j.bmcl.2010.01.129. Epub 2010 Feb 1.
3
Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole.
Eur J Med Chem. 2010 Jan;45(1):149-59. doi: 10.1016/j.ejmech.2009.09.037. Epub 2009 Sep 30.
5
3D QSAR methods: Phase and Catalyst compared.
J Chem Inf Model. 2007 May-Jun;47(3):1248-57. doi: 10.1021/ci7000082. Epub 2007 May 4.
6
PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results.
J Comput Aided Mol Des. 2006 Oct-Nov;20(10-11):647-71. doi: 10.1007/s10822-006-9087-6. Epub 2006 Nov 24.
7
PHASE: a novel approach to pharmacophore modeling and 3D database searching.
Chem Biol Drug Des. 2006 May;67(5):370-2. doi: 10.1111/j.1747-0285.2006.00384.x.
9
Cognitive vulnerability to depression: a dual process model.
Clin Psychol Rev. 2005 Nov;25(7):975-1002. doi: 10.1016/j.cpr.2005.03.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验