Barbero Sergio
Instituto de Óptica (CSIC), Madrid, Spain.
Ophthalmic Physiol Opt. 2015 Jul;35(4):388-93. doi: 10.1111/opo.12216. Epub 2015 May 18.
To propose geodesic curvature as a metric to characterise how an optical surface locally differs from axial symmetry. To derive equations to evaluate geodesic curvatures of arbitrary surfaces expressed in polar coordinates.
The concept of geodesic curvature is explained in detail as compared to other curvature-based metrics. Starting with the formula representing a surface as function of polar coordinates, an equation for the geodesic curvature is obtained depending only on first and second radial and first order angular derivatives of the surface function. The potential of the geodesic curvature is illustrated using different surface tests.
Geodesic curvature reveals local axial asymmetries more sharply than other types of curvatures such as normal curvatures.
Geodesic curvature maps could be used to characterise local axial asymmetries for relevant optometry applications such as corneal topography anomalies (keratoconus) or ophthalmic lens metrology.
提出测地曲率作为一种度量,用于表征光学表面局部与轴对称性的差异。推导用于评估以极坐标表示的任意曲面的测地曲率的方程。
与其他基于曲率的度量相比,详细解释了测地曲率的概念。从将曲面表示为极坐标函数的公式出发,得到一个仅依赖于曲面函数的一阶和二阶径向导数以及一阶角导数的测地曲率方程。使用不同的曲面测试说明了测地曲率的潜力。
与法曲率等其他类型的曲率相比,测地曲率能更清晰地揭示局部轴向不对称性。
测地曲率图可用于表征相关验光应用中的局部轴向不对称性,如角膜地形图异常(圆锥角膜)或眼科镜片计量。