Optometry Research Group, Department of Optics, University of Valencia, Valencia, Spain.
Ophthalmic Physiol Opt. 2009 Nov;29(6):652-60. doi: 10.1111/j.1475-1313.2009.00642.x.
To describe a method to measure corneal volume from topography and pachymetry, and test its clinical use on a sample of healthy human subjects and a case of circumscribed posterior keratoconus.
Corneal curvature (PCT 200 corneal topography system; Optopol Technology SA, Zawiercie, Poland) and ultrasonic topographic pachometry on 25 points (Ophthasonic A-Scan/Pachometer III; Teknar Inc., St Louis, MO, USA) were measured on each of 12 young healthy corneas and one cornea suffering from circumscribed posterior keratoconus. Topography and pachymetry data were used to calculate the coordinates for the corresponding points on the posterior surface of the cornea. TableCurve 3D software (Systat Software Inc., Chicago, IL, USA) was used to fit a surface to those points measured. Integration of the surface fitted to the data points, corresponding to the anterior and posterior corneal surfaces, was used to calculate the volume underneath each of them. Subtraction of volumes underneath anterior and posterior surfaces, taking into account an axial offset equal to the central corneal thickness, rendered corneal volume for the central 6 mm of the cornea.
Central corneal thickness ranged from 520 to 630 mum for the healthy corneas. Corneal volumes for this sample analyzed averaged 18.66 +/- 1.15 mm(3) (range 17.25-20.53 mm(3)). For the posterior keratoconic cornea, the affected area was located at about 1.5-2 mm from the corneal center on the 135 degrees hemimeridian of the right eye, observed through topographic pachymetry. Calculated corneal volume for the central 6 mm was 16.072 mm(3), noticeably lower than those found in the sample without pathology, but within the range for corneas presenting with keratoconus.
Corneal volume is a useful parameter for characterising dystrophic corneas and can aid in the detection of rare anomalies which are hardly detected with corneal topography and/or central corneal thickness evaluation. A potentially useful measure of corneal volume can be calculated from anterior corneal topography and topographic pachymetry data. Values obtained are in good agreement with previous studies using corneal tomography techniques. The methodology has been shown to have potential for retrospective analysis of data, or where no access is available to tomographical techniques.
描述一种从角膜地形图和角膜测厚术中测量角膜体积的方法,并在一组健康人样本和一例局限性后部圆锥角膜病例中测试其临床应用。
对 12 例年轻健康角膜和 1 例局限性后部圆锥角膜患者的每只眼分别进行角膜曲率(PCT 200 角膜地形图系统;Optopol Technology SA,Zawiercie,波兰)和 25 点超声角膜测厚术(Ophthasonic A-Scan/Pachometer III;Teknar Inc.,圣路易斯,密苏里州,美国)测量。利用地形和角膜测厚术数据计算出角膜后表面相应点的坐标。使用 TableCurve 3D 软件(Systat Software Inc.,芝加哥,伊利诺伊州,美国)拟合这些点的表面。对与前、后角膜表面对应的测量点进行积分,用以计算每个表面下的体积。从前、后表面下的体积中减去考虑到等于中央角膜厚度的轴向偏移量,得出角膜中央 6mm 范围内的角膜体积。
健康角膜的中央角膜厚度范围为 520 至 630µm。该样本分析的角膜体积平均值为 18.66±1.15mm3(范围 17.25-20.53mm3)。对于右眼 135 度半子午线的局限性圆锥角膜,通过地形角膜测厚术观察到,病变区域位于距角膜中心约 1.5-2mm 处。计算出的角膜中央 6mm 体积为 16.072mm3,明显低于无病变的样本,但仍在圆锥角膜的范围内。
角膜体积是一种用于描述营养不良性角膜的有用参数,可以帮助发现用角膜地形图和/或中央角膜厚度评估很难检测到的罕见异常。从前部角膜地形图和角膜地形图数据可以计算出一个潜在有用的角膜体积测量值。所获得的值与以前使用角膜断层扫描技术的研究结果一致。该方法已显示出在没有角膜断层扫描技术的情况下进行回顾性数据分析或获取数据的潜在用途。