Suppr超能文献

基于评估数学模型的多分散药物颗粒集合体扩散控制溶解分析

Analysis of Diffusion-Controlled Dissolution from Polydisperse Collections of Drug Particles with an Assessed Mathematical Model.

作者信息

Wang Yanxing, Abrahamsson Bertil, Lindfors Lennart, Brasseur James G

机构信息

Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802.

Pharmaceutical Development, AstraZeneca R&D, Mölndal, S-431 83, Sweden.

出版信息

J Pharm Sci. 2015 Sep;104(9):2998-3017. doi: 10.1002/jps.24472. Epub 2015 May 18.

Abstract

We introduce a "hierarchical" modeling strategy designed to be systematically extensible to increase the detail of dissolution predictions from polydisperse collections of drug particles and to be placed on firm mathematical and physical foundations with diffusion-dominated dissolution at its core to predict dissolution and the evolution of particle size distribution. We assess the model with experimental data and demonstrate higher accuracy by treating the polydisperse nature of dissolution. A level in the hierarchy is applied to study elements of diffusion-driven dissolution, in particular the role of particle-size distribution width with varying dose level and the influences of "confinement" on the process of dissolution. Confinement influences surface molecular flux, directly by the increase in bulk concentration and indirectly by the relative volume of particles to container. We find that the dissolution process can be broadly categorized within three "regimes" defined by the ratio of total concentration Ctot to solubility CS . Sink conditions apply in the first regime, when C tot /CS<∼0.1. When C tot /CS>∼5 (regime 3) dissolution is dominated by confinement and normalized saturation time follows a simple power law relationship. Regime 2 is characterized by a "saturation singularity" where dissolution is sensitive to both initial particle size distribution and confinement.

摘要

我们介绍了一种“分层”建模策略,该策略旨在系统地扩展,以增加对多分散药物颗粒集合体溶出预测的细节,并建立在坚实的数学和物理基础之上,以扩散主导的溶出为核心来预测溶出以及粒径分布的演变。我们用实验数据评估该模型,并通过处理溶出的多分散性质证明了更高的准确性。分层中的一个层次用于研究扩散驱动溶出的要素,特别是不同剂量水平下粒径分布宽度的作用以及“受限”对溶出过程的影响。受限直接通过总体积浓度的增加以及间接通过颗粒与容器的相对体积来影响表面分子通量。我们发现,溶出过程大致可分为由总浓度Ctot与溶解度CS的比值定义的三个“区域”。当Ctot/CS<∼0.1时,第一个区域适用漏槽条件。当Ctot/CS>∼5(区域3)时,溶出受限于受限,归一化饱和时间遵循简单的幂律关系。区域2的特征是“饱和奇点”,其中溶出对初始粒径分布和受限都很敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验