Pan Sudip, Mandal Subhajit, Chattaraj Pratim K
Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology , Kharagpur, 721302, India.
J Phys Chem B. 2015 Aug 27;119(34):10962-74. doi: 10.1021/acs.jpcb.5b01396. Epub 2015 Jun 1.
Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).
开展了密度泛函和从头算分子动力学研究,以探究稀有气体封装的葫芦[6]脲(CB[6])体系的稳定性。计算了相互作用能、解离能和解离焓,以了解CB[6]封装稀有气体原子的效果。CB[6]最多可封装三个氖原子,其解离能(零点能校正后)在3.4 - 4.1千卡/摩尔范围内,而由于尺寸较大,只有一个氩或氪原子封装的类似物是可行的。第二个氩原子的解离能值仅为1.0千卡/摩尔。另一方面,第二个氪原子的解离能为 -0.5千卡/摩尔,这意味着该体系不稳定。稀有气体的解离过程本质上是吸热的,从氖到氪逐渐增加。发现氪封装的类似物在室温下是可行的。然而,氖和氩封装的类似物需要低温。温度 - 压力相图突出了氪@CB[6]缔合和解离过程有利的区域。在环境温度和压力下,CB[6]可用作有效的稀有气体载体。使用维伯格键指数、非共价相互作用指数、电子密度和能量分解分析来探究稀有气体原子与CB[6]之间相互作用的本质。发现色散相互作用是吸引能中最重要的项。在298 K的整个模拟过程中,发现一个稀有气体捕获类似物中的氖和氩原子留在CB[6]的腔内。然而,在模拟过程中,Ng2@CB[6]中的Ng2单元会翻转至CB[6]的开口面。1皮秒后,Ne3@CB[6]中的一个氖原子几乎到达开口面,而其他两个氖原子留在腔内。在较低温度(77 K)下,在整个模拟时间(1皮秒)内,Ngn@CB[6]中的所有Ng原子都很好地留在CB[6]的腔内。