Suppr超能文献

支撑面平移的时间结构驱动站立时姿势控制的时间结构。

Temporal Structure of Support Surface Translations Drive the Temporal Structure of Postural Control During Standing.

作者信息

Rand Troy J, Myers Sara A, Kyvelidou Anastasia, Mukherjee Mukul

机构信息

University of Nebraska at Omaha, Biomechanics Research Building #210, Omaha, NE, 68182-0216, USA.

出版信息

Ann Biomed Eng. 2015 Nov;43(11):2699-707. doi: 10.1007/s10439-015-1336-1. Epub 2015 May 21.

Abstract

A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (p < 0.001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (p < 0.001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation.

摘要

健康的生物系统具有一种呈现分形特性且高度复杂的时间结构。不健康的系统则表现出复杂性降低,并且在时间序列的时间结构上具有更高或更低的可预测性。本研究的目的是确定具有不同时间结构的支撑面平移是否会影响压力中心(COP)信号的时间结构。八名健康的年轻参与者站在一个在前后方向上平移的测力平台上,平移的输入条件具有不同的复杂性:白噪声、粉红噪声、棕噪声和正弦波。去趋势波动分析用于表征COP时间序列在前后方向上的长程相关性。重复测量方差分析显示各条件之间存在差异(p < 0.001)。与正常站立相比,复杂性较低的支撑面平移导致COP的复杂性较低。二次趋势分析表明,随着条件可预测性的增加,呈现倒U形(p < 0.001)。通过支撑面平移影响姿势控制复杂性的能力可能对康复具有重要意义。

相似文献

1
Temporal Structure of Support Surface Translations Drive the Temporal Structure of Postural Control During Standing.
Ann Biomed Eng. 2015 Nov;43(11):2699-707. doi: 10.1007/s10439-015-1336-1. Epub 2015 May 21.
2
Transitions in persistence of postural dynamics depend on the velocity and structure of postural perturbations.
Exp Brain Res. 2018 May;236(5):1491-1500. doi: 10.1007/s00221-018-5235-1. Epub 2018 Mar 21.
4
Long-range cross-correlations between center of pressure velocity and colored noises provided during quiet standing.
Neurosci Lett. 2024 Nov 1;842:138008. doi: 10.1016/j.neulet.2024.138008. Epub 2024 Oct 5.
5
Age-related differences in quality of standing balance using a composite score.
Gerontology. 2014;60(4):306-14. doi: 10.1159/000357406. Epub 2014 Mar 7.
8
Relationship of multiscale entropy to task difficulty and sway velocity in healthy young adults.
Somatosens Mot Res. 2015;32(4):211-8. doi: 10.3109/08990220.2015.1074565. Epub 2015 Sep 15.
9
Age-related changes in postural responses revealed by support-surface translations with a long acceleration-deceleration interval.
Clin Neurophysiol. 2010 Jan;121(1):109-17. doi: 10.1016/j.clinph.2009.09.025. Epub 2009 Nov 10.
10
Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories.
Ann Biomed Eng. 2013 Aug;41(8):1646-60. doi: 10.1007/s10439-012-0646-9. Epub 2012 Sep 7.

引用本文的文献

1
DFA as a window into postural dynamics supporting task performance: does choice of step size matter?
Front Netw Physiol. 2023 Aug 7;3:1233894. doi: 10.3389/fnetp.2023.1233894. eCollection 2023.
2
Comparison of a portable balance board for measures of persistence in postural sway.
J Biomech. 2020 Feb 13;100:109600. doi: 10.1016/j.jbiomech.2020.109600. Epub 2020 Jan 3.
3
Alterations in Cortical Activation Among Individuals With Chronic Ankle Instability During Single-Limb Postural Control.
J Athl Train. 2019 Jun;54(6):718-726. doi: 10.4085/1062-6050-448-17. Epub 2019 Jun 4.
7
Transitions in persistence of postural dynamics depend on the velocity and structure of postural perturbations.
Exp Brain Res. 2018 May;236(5):1491-1500. doi: 10.1007/s00221-018-5235-1. Epub 2018 Mar 21.
9
Tactile stimuli affect long-range correlations of stride interval and stride length differently during walking.
Exp Brain Res. 2017 Apr;235(4):1185-1193. doi: 10.1007/s00221-017-4881-z. Epub 2017 Feb 10.

本文引用的文献

1
Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.
Hum Mov Sci. 2014 Aug;36:20-34. doi: 10.1016/j.humov.2014.04.006. Epub 2014 Jun 7.
2
Gaze and posture coordinate differently with the complexity of visual stimulus motion.
Exp Brain Res. 2014 Sep;232(9):2797-806. doi: 10.1007/s00221-014-3962-5. Epub 2014 May 4.
3
Sensory reweighting dynamics in human postural control.
J Neurophysiol. 2014 May;111(9):1852-64. doi: 10.1152/jn.00669.2013. Epub 2014 Feb 5.
4
Fractal fluctuations and complexity: current debates and future challenges.
Crit Rev Biomed Eng. 2012;40(6):485-500. doi: 10.1615/critrevbiomedeng.2013006727.
5
Gait variability is altered in older adults when listening to auditory stimuli with differing temporal structures.
Ann Biomed Eng. 2013 Aug;41(8):1595-603. doi: 10.1007/s10439-012-0654-9. Epub 2012 Sep 7.
6
Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson's patients.
PLoS One. 2012;7(3):e32600. doi: 10.1371/journal.pone.0032600. Epub 2012 Mar 2.
7
Human movement variability, nonlinear dynamics, and pathology: is there a connection?
Hum Mov Sci. 2011 Oct;30(5):869-88. doi: 10.1016/j.humov.2011.06.002. Epub 2011 Jul 29.
9
Aging, time scales, and sensorimotor variability.
Psychol Aging. 2009 Dec;24(4):809-18. doi: 10.1037/a0017911.
10
Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al.
J Appl Physiol (1985). 2009 Apr;106(4):1272-9. doi: 10.1152/japplphysiol.90757.2008. Epub 2009 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验