Suppr超能文献

SPAK蛋白激酶CCT结构域在控制血压中的关键作用。

Critical role of the SPAK protein kinase CCT domain in controlling blood pressure.

作者信息

Zhang Jinwei, Siew Keith, Macartney Thomas, O'Shaughnessy Kevin M, Alessi Dario R

机构信息

MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland and

Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK.

出版信息

Hum Mol Genet. 2015 Aug 15;24(16):4545-58. doi: 10.1093/hmg/ddv185. Epub 2015 May 20.

Abstract

The STE20/SPS1-related proline/alanine-rich kinase (SPAK) controls blood pressure (BP) by phosphorylating and stimulating the Na-Cl (NCC) and Na-K-2Cl (NKCC2) co-transporters, which regulate salt reabsorption in the kidney. SPAK possesses a conserved carboxy-terminal (CCT) domain, which recognises RFXV/I motifs present in its upstream activator [isoforms of the With-No-lysine (K) kinases (WNKs)] as well as its substrates (NCC and NKCC2). To define the physiological importance of the CCT domain, we generated knock-in mice in which the critical CCT domain Leu502 residue required for high affinity recognition of the RFXI/V motif was mutated to Alanine. The SPAK CCT domain defective knock-in animals are viable, and the Leu502Ala mutation abolished co-immunoprecipitation of SPAK with WNK1, NCC and NKCC2. The CCT domain defective animals displayed markedly reduced SPAK activity and phosphorylation of NCC and NKCC2 co-transporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in mRNA levels. The SPAK CCT domain knock-in mice showed typical features of Gitelman Syndrome with mild hypokalaemia, hypomagnesaemia, hypocalciuria and displayed salt wasting on switching to a low-Na diet. These observations establish that the CCT domain plays a crucial role in controlling SPAK activity and BP. Our results indicate that CCT domain inhibitors would be effective at reducing BP by lowering phosphorylation as well as expression of NCC and NKCC2.

摘要

STE20/SPS1相关富含脯氨酸/丙氨酸激酶(SPAK)通过磷酸化并激活钠氯共转运体(NCC)和钠钾氯共转运体(NKCC2)来控制血压(BP),这两种共转运体调节肾脏中的盐重吸收。SPAK具有一个保守的羧基末端(CCT)结构域,该结构域可识别其上游激活剂[无赖氨酸(K)激酶(WNK)的异构体]及其底物(NCC和NKCC2)中存在的RFXV/I基序。为了确定CCT结构域的生理重要性,我们构建了基因敲入小鼠,其中将RFXI/V基序高亲和力识别所需的关键CCT结构域Leu502残基突变为丙氨酸。SPAK CCT结构域缺陷的基因敲入动物能够存活,并且Leu502Ala突变消除了SPAK与WNK1、NCC和NKCC2的共免疫沉淀。CCT结构域缺陷的动物显示SPAK活性以及NCC和NKCC2共转运体在被SPAK磷酸化的残基处的磷酸化明显降低。这还伴随着NCC和NKCC2蛋白表达的降低,而mRNA水平没有变化。SPAK CCT结构域基因敲入小鼠表现出吉特曼综合征的典型特征,伴有轻度低钾血症、低镁血症、低钙尿症,并且在改用低钠饮食时出现盐消耗。这些观察结果表明,CCT结构域在控制SPAK活性和血压方面起着关键作用。我们的结果表明,CCT结构域抑制剂通过降低NCC和NKCC2的磷酸化以及表达来有效降低血压。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45a/4512625/b6555bd3361f/ddv18501.jpg

相似文献

1
Critical role of the SPAK protein kinase CCT domain in controlling blood pressure.
Hum Mol Genet. 2015 Aug 15;24(16):4545-58. doi: 10.1093/hmg/ddv185. Epub 2015 May 20.
2
Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F373-F385. doi: 10.1152/ajprenal.00101.2024. Epub 2024 Jul 4.
3
Role of the WNK-activated SPAK kinase in regulating blood pressure.
EMBO Mol Med. 2010 Feb;2(2):63-75. doi: 10.1002/emmm.200900058.
5
SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.
J Physiol. 2016 Sep 1;594(17):4945-66. doi: 10.1113/JP272311. Epub 2016 May 29.
6
Macrophage SPAK deletion limits a low potassium-induced kidney inflammatory program.
Am J Physiol Renal Physiol. 2024 Nov 1;327(5):F899-F909. doi: 10.1152/ajprenal.00175.2024. Epub 2024 Sep 19.
7
With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters.
Am J Physiol Cell Physiol. 2016 Jul 1;311(1):C54-66. doi: 10.1152/ajpcell.00193.2015. Epub 2016 May 11.
9
Regulation of the WNK4-SPAK-NCC pathway by the calcium-sensing receptor.
Curr Opin Nephrol Hypertens. 2023 Sep 1;32(5):451-457. doi: 10.1097/MNH.0000000000000915. Epub 2023 Jul 7.
10
SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction.
J Am Soc Nephrol. 2010 Nov;21(11):1868-77. doi: 10.1681/ASN.2009121295. Epub 2010 Sep 2.

引用本文的文献

1
Kinase interaction analysis predicts actions of the WNK-OSR1/SPAK pathway.
Commun Biol. 2025 Sep 5;8(1):1335. doi: 10.1038/s42003-025-08551-5.
2
NRBP1 pseudokinase binds to and activates the WNK pathway in response to osmotic stress.
Sci Adv. 2025 Jul 18;11(29):eadv4636. doi: 10.1126/sciadv.adv4636. Epub 2025 Jul 16.
3
The biogenesis of potassium transporters: implications of disease-associated mutations.
Crit Rev Biochem Mol Biol. 2024 Jun-Aug;59(3-4):154-198. doi: 10.1080/10409238.2024.2369986. Epub 2024 Jul 1.
4
The role of family of cation-chloride cotransporters and drug discovery methodologies.
J Pharm Anal. 2023 Dec;13(12):1471-1495. doi: 10.1016/j.jpha.2023.09.002. Epub 2023 Sep 9.
5
Arginine vasopressin regulates the renal Na-Cl and Na-K-Cl cotransporters through with-no-lysine kinase 4 and inhibitor 1 phosphorylation.
Am J Physiol Renal Physiol. 2024 Feb 1;326(2):F285-F299. doi: 10.1152/ajprenal.00343.2023. Epub 2023 Dec 14.
6
Role of the cation-chloride-cotransporters in the circadian system.
Asian J Pharm Sci. 2021 Sep;16(5):589-597. doi: 10.1016/j.ajps.2020.10.003. Epub 2020 Dec 7.
7
CCT and CCT-Like Modular Protein Interaction Domains in WNK Signaling.
Mol Pharmacol. 2022 Apr;101(4):201-212. doi: 10.1124/molpharm.121.000307. Epub 2021 Jul 26.
8
Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension.
Acta Pharm Sin B. 2021 May;11(5):1117-1128. doi: 10.1016/j.apsb.2020.09.009. Epub 2020 Sep 22.
9
Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke.
Int J Mol Sci. 2021 Jan 27;22(3):1232. doi: 10.3390/ijms22031232.

本文引用的文献

1
The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters.
Sci Signal. 2014 Jul 15;7(334):re3. doi: 10.1126/scisignal.2005365.
2
Adjusting the aortic augmentation index for the resting heart rate.
J Atheroscler Thromb. 2014;21(5):378-80. doi: 10.5551/jat.23192. Epub 2014 Apr 8.
5
Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II.
Hypertension. 2013 Nov;62(5):872-8. doi: 10.1161/HYPERTENSIONAHA.113.01543. Epub 2013 Sep 9.
7
Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7838-43. doi: 10.1073/pnas.1304592110. Epub 2013 Apr 1.
8
The SLC12 family of electroneutral cation-coupled chloride cotransporters.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):288-98. doi: 10.1016/j.mam.2012.05.002.
9
Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension.
Cell Rep. 2013 Mar 28;3(3):858-68. doi: 10.1016/j.celrep.2013.02.024. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验