*MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K.
†Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K.
Biochem J. 2014 Jun 1;460(2):237-46. doi: 10.1042/BJ20140153.
WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain β-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension.
WNK1[无赖氨酸(K)]和 WNK4 通过控制肾脏中离子共转运体的活性来调节血压。开创性的工作揭示了泛素化,因此 WNK 同工型的水平受 Cullin-RING E3 泛素连接酶复合物(CRL3KLHL3)的控制,该复合物利用 CUL3(Cullin3)及其底物接头 KLHL3(Kelch-like 蛋白 3)。CUL3 或 KLHL3 的功能丧失突变通过稳定 WNK 同工型导致遗传性高血压疾病 Gordon 综合征。KLHL3 与位于 WNK 同工型 C 端非催化结构域内的高度保守降解基序结合。这种相互作用对于 CRL3KLHL3 的泛素化和 WNK4 和 KLHL3 的致病突变至关重要,这些突变通过破坏这种相互作用对血压产生影响。在本研究中,我们报告了 KLHL3 Kelch 结构域与 WNK4 降解基序复合物的晶体结构。这揭示了 Kelch 结构域β-桨叶表面上保守残基与 WNK4 降解基序之间错综复杂的相互作用网络。重要的是,许多致病突变通过破坏关键界面接触来抑制结合。我们还展示了与 KLHL2 复合物的 WNK4 降解基序的结构,也有报道称 KLHL2 与 WNK4 结合。这证实 KLHL2 以与 KLHL3 相似的方式与 WNK 激酶相互作用,但与另一种 KLHL 蛋白 KEAP1(Kelch-like enoyl-CoA hydratase-associated protein 1)与底物 NRF2(nuclear factor-erythroid 2-related factor 2)结合的方式截然不同。本研究进一步深入了解了 Kelch 样衔接蛋白如何识别其底物,并为 WNK4 和 KLHL3 突变导致高血压提供了结构基础。