Suppr超能文献

基于静态和动态电子密度的化学键拓扑性质

Topological Properties of Chemical Bonds from Static and Dynamic Electron Densities.

作者信息

Jagannatha Prathapa Siriyara, Held Jeanette, van Smaalen Sander

机构信息

Laboratory of Crystallography, University of Bayreuth Universitaetsstrasse 30, 95447 Bayreuth, Germany.

出版信息

Z Anorg Allg Chem. 2013 Sep;639(11):2047-2056. doi: 10.1002/zaac.201200535. Epub 2013 Jul 23.

Abstract

Dynamic and static electron densities (EDs) based on the independent spherical atom model (IAM) and multipole (MP) models of crambin were successfully computed, holding no series-termination effects. The densities are compared to EDs of small biological molecules at diverse temperatures. It is outlined that proteins exhibit an intrinsic flexibility, present as frozen disorder at 100 K, in contrast to small molecules. The flexibility of the proteins is reflected by atomic displacement parameters (B-factors), which are considerably larger than for small molecules at 298 K. Thus, an optimal deconvolution of deformation density and thermal motion is not guaranteed, which prevents a free refinement of MP parameters but allows an application of transferable, fixed MP parameters. The analysis of the topological properties, such as the density at bond critical points (BCPs) and the Laplacian, reveals systematic differences between static and dynamic EDs. Zero-point-vibrations, yet present in dynamic EDs at low temperature, affect but marginally the EDs of small molecules. The zero-point-vibrations cause a smearing of the ED, which becomes more pronounced with increasing temperature. Topological properties, primarily the Laplacian, of covalent bonds appear to be more sensitive to effects by temperature and the polarity of the bonds. However, dynamic EDs at ca. 20 K based on MP models provide a good characterization of chemical bonding. Both the density at BCPs and the Laplacian of hydrogen bonds constitute similar values from static and dynamic EDs for all studied temperatures. Deformation densities demonstrate the necessity of the employment of MP parameters in order to comprise the nature of covalent bonds. The character of hydrogen bonds can be roughly pictured by IAM, whereas MP parameters are recommended for a classification of hydrogen bonds beyond a solely interpretation of topological properties.

摘要

基于独立球形原子模型(IAM)和胰凝乳蛋白酶多极(MP)模型成功计算了动态和静态电子密度(EDs),不存在级数终止效应。将这些密度与不同温度下小生物分子的电子密度进行了比较。结果表明,与小分子相比,蛋白质表现出固有的灵活性,在100 K时表现为冻结无序。蛋白质的灵活性通过原子位移参数(B因子)体现,该参数在298 K时比小分子大得多。因此,不能保证对变形密度和热运动进行最佳去卷积,这妨碍了MP参数的自由精修,但允许应用可转移的固定MP参数。对拓扑性质的分析,如键临界点(BCP)处的密度和拉普拉斯算子,揭示了静态和动态电子密度之间的系统差异。零点振动在低温下的动态电子密度中仍然存在,对小分子的电子密度影响很小。零点振动会导致电子密度的模糊,随着温度升高这种模糊会变得更加明显。共价键的拓扑性质,主要是拉普拉斯算子,似乎对温度效应和键的极性更敏感。然而,基于MP模型在约20 K时的动态电子密度能够很好地表征化学键。对于所有研究温度,氢键在BCP处的密度和拉普拉斯算子在静态和动态电子密度中都构成相似的值。变形密度表明需要使用MP参数来包含共价键的性质。氢键的特征可以通过IAM大致描绘,而对于氢键的分类,除了仅对拓扑性质进行解释外,推荐使用MP参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fc3/4431502/df1fb507add1/zaac0639-2047-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验