Suppr超能文献

利用多传感器站数据进行水质事件检测中的网络水力学纳入。

Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

机构信息

Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.

Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Water Res. 2015 Sep 1;80:47-58. doi: 10.1016/j.watres.2015.04.036. Epub 2015 May 7.

Abstract

Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes.

摘要

事件检测是当前供水管网分析中最具挑战性的课题之一

如何有效地利用不同管网位置的常规在线水力(例如压力、流量)和水质(例如 pH 值、余氯、浊度)测量数据来检测水质污染事件。本研究描述了一种将多个传感器站数据与管网水力相结合的综合事件检测模型。迄今为止,事件检测建模可能仅限于单个传感器站位置和数据集。单个传感器站模型与管网水力洞察相分离,因此可能容易受到误报的影响。本工作旨在通过将局部和空间水力数据理解集成到事件检测模型中,减少这一限制。空间分析通过通过探索传感器之间的水力相互影响,发现具有较低特征的事件,从而补充局部事件检测工作。本研究的独特贡献在于将水力模拟信息纳入空间分布传感器的整体事件检测过程中。该方法在两个示例应用中进行了演示,包括基础运行和敏感性分析。结果表明,与单个传感器事件检测方案相比,所建议的模型具有明显的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验