Chen Yen-Chen, Chang Yo-Cheng, Ke Wan-Chi, Chiu Hung-Wen
Graduate Institute of Biomedical Informatics, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan.
Graduate Institute of Biomedical Informatics, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan.
J Biomed Inform. 2015 Aug;56:1-7. doi: 10.1016/j.jbi.2015.05.006. Epub 2015 May 18.
Adjuvant chemotherapy (ACT) is used after surgery to prevent recurrence or metastases. However, ACT for non-small cell lung cancer (NSCLC) is still controversial. This study aimed to develop prediction models to distinguish who is suitable for ACT (ACT-benefit) and who should avoid ACT (ACT-futile) in NSCLC.
We identified the ACT correlated gene signatures and performed several types of ANN algorithms to construct the optimal ANN architecture for ACT benefit classification. Reliability was assessed by cross-data set validation.
We obtained 2 probes (2 genes) with T-stage clinical data combination can get good prediction result. These genes included 208893_s_at (DUSP6) and 204891_s_at (LCK). The 10-fold cross validation classification accuracy was 65.71%. The best result of ANN models is MLP14-8-2 with logistic activation function.
Using gene signature profiles to predict ACT benefit in NSCLC is feasible. The key to this analysis was identifying the pertinent genes and classification. This study maybe helps reduce the ineffective medical practices to avoid the waste of medical resources.
辅助化疗(ACT)用于手术后预防复发或转移。然而,非小细胞肺癌(NSCLC)的辅助化疗仍存在争议。本研究旨在开发预测模型,以区分NSCLC患者中谁适合接受辅助化疗(ACT获益)以及谁应避免接受辅助化疗(ACT无效)。
我们确定了与ACT相关的基因特征,并进行了几种类型的人工神经网络(ANN)算法,以构建用于ACT获益分类的最佳ANN架构。通过跨数据集验证评估可靠性。
我们获得了2个探针(2个基因),与T分期临床数据相结合可获得良好的预测结果。这些基因包括208893_s_at(双特异性磷酸酶6,DUSP6)和204891_s_at(淋巴细胞特异性蛋白酪氨酸激酶,LCK)。10倍交叉验证分类准确率为65.71%。ANN模型的最佳结果是具有逻辑激活函数的MLP14-8-2。
利用基因特征谱预测NSCLC患者的ACT获益是可行的。该分析的关键在于识别相关基因和进行分类。本研究可能有助于减少无效的医疗行为,避免医疗资源的浪费。