Suppr超能文献

SNRFCB:基于子网络的随机森林分类器,用于预测癌症治疗中化疗对生存的益处。

SNRFCB: sub-network based random forest classifier for predicting chemotherapy benefit on survival for cancer treatment.

作者信息

Shi Mingguang, He Jianmin

机构信息

School of Electric Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China.

出版信息

Mol Biosyst. 2016 Apr;12(4):1214-23. doi: 10.1039/c5mb00399g. Epub 2016 Feb 11.

Abstract

Adjuvant chemotherapy (CTX) should be individualized to provide potential survival benefit and avoid potential harm to cancer patients. Our goal was to establish a computational approach for making personalized estimates of the survival benefit from adjuvant CTX. We developed Sub-Network based Random Forest classifier for predicting Chemotherapy Benefit (SNRFCB) based gene expression datasets of lung cancer. The SNRFCB approach was then validated in independent test cohorts for identifying chemotherapy responder cohorts and chemotherapy non-responder cohorts. SNRFCB involved the pre-selection of gene sub-network signatures based on the mutations and on protein-protein interaction data as well as the application of the random forest algorithm to gene expression datasets. Adjuvant CTX was significantly associated with the prolonged overall survival of lung cancer patients in the chemotherapy responder group (P = 0.008), but it was not beneficial to patients in the chemotherapy non-responder group (P = 0.657). Adjuvant CTX was significantly associated with the prolonged overall survival of lung cancer squamous cell carcinoma (SQCC) subtype patients in the chemotherapy responder cohorts (P = 0.024), but it was not beneficial to patients in the chemotherapy non-responder cohorts (P = 0.383). SNRFCB improved prediction performance as compared to the machine learning method, support vector machine (SVM). To test the general applicability of the predictive model, we further applied the SNRFCB approach to human breast cancer datasets and also observed superior performance. SNRFCB could provide recurrent probability for individual patients and identify which patients may benefit from adjuvant CTX in clinical trials.

摘要

辅助化疗(CTX)应个体化实施,以提供潜在的生存获益并避免对癌症患者造成潜在伤害。我们的目标是建立一种计算方法,用于对辅助CTX的生存获益进行个性化评估。我们基于肺癌的基因表达数据集开发了基于子网络的随机森林分类器来预测化疗获益(SNRFCB)。然后在独立测试队列中对SNRFCB方法进行验证,以识别化疗反应者队列和化疗无反应者队列。SNRFCB包括基于突变和蛋白质-蛋白质相互作用数据对基因子网络特征进行预选择,以及将随机森林算法应用于基因表达数据集。在化疗反应者组中,辅助CTX与肺癌患者的总生存期延长显著相关(P = 0.008),但对化疗无反应者组的患者没有益处(P = 0.657)。在化疗反应者队列中,辅助CTX与肺鳞状细胞癌(SQCC)亚型患者的总生存期延长显著相关(P = 0.024),但对化疗无反应者队列的患者没有益处(P = 0.383)。与机器学习方法支持向量机(SVM)相比,SNRFCB提高了预测性能。为了测试预测模型的普遍适用性,我们进一步将SNRFCB方法应用于人类乳腺癌数据集,并也观察到了卓越的性能。SNRFCB可以为个体患者提供复发概率,并在临床试验中识别哪些患者可能从辅助CTX中获益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验