Suppr超能文献

超越衍射极限的红外成像与光谱学

Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.

作者信息

Centrone Andrea

机构信息

Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; email:

出版信息

Annu Rev Anal Chem (Palo Alto Calif). 2015;8:101-26. doi: 10.1146/annurev-anchem-071114-040435. Epub 2015 May 18.

Abstract

Progress in nanotechnology is enabled by and dependent on the availability of measurement methods with spatial resolution commensurate with nanomaterials' length scales. Chemical imaging techniques, such as scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), have provided scientists with means of extracting rich chemical and structural information with nanoscale resolution. This review presents some basics of infrared spectroscopy and microscopy, followed by detailed descriptions of s-SNOM and PTIR working principles. Nanoscale spectra are compared with far-field macroscale spectra, which are widely used for chemical identification. Selected examples illustrate either technical aspects of the measurements or applications in materials science. Central to this review is the ability to record nanoscale infrared spectra because, although chemical maps enable immediate visualization, the spectra provide information to interpret the images and characterize the sample. The growing breadth of nanomaterials and biological applications suggest rapid growth for this field.

摘要

纳米技术的进步得益于并依赖于具有与纳米材料长度尺度相匹配的空间分辨率的测量方法。化学成像技术,如散射扫描近场光学显微镜(s-SNOM)和光热诱导共振(PTIR),为科学家提供了以纳米级分辨率提取丰富化学和结构信息的手段。本综述介绍了红外光谱和显微镜的一些基础知识,随后详细描述了s-SNOM和PTIR的工作原理。将纳米级光谱与广泛用于化学鉴定的远场宏观光谱进行了比较。选定的示例说明了测量的技术方面或在材料科学中的应用。本综述的核心是记录纳米级红外光谱的能力,因为尽管化学图谱能够立即实现可视化,但光谱提供了解释图像和表征样品的信息。纳米材料和生物应用的不断拓展表明该领域将迅速发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验