Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA; email:
Annu Rev Chem Biomol Eng. 2018 Jun 7;9:365-387. doi: 10.1146/annurev-chembioeng-060817-084150. Epub 2018 Mar 29.
Light-matter interactions can provide a wealth of detailed information about the structural, electronic, optical, and chemical properties of materials through various excitation and scattering processes that occur over different length, energy, and timescales. Unfortunately, the wavelike nature of light limits the achievable spatial resolution for interrogation and imaging of materials to roughly λ/2 because of diffraction. Scanning near-field optical microscopy (SNOM) breaks this diffraction limit by coupling light to nanostructures that are specifically designed to manipulate, enhance, and/or extract optical signals from very small regions of space. Progress in the SNOM field over the past 30 years has led to the development of many methods to optically characterize materials at lateral spatial resolutions well below 100 nm. We review these exciting developments and demonstrate how SNOM is truly extending optical imaging and spectroscopy to the nanoscale.
光与物质的相互作用可以通过各种激发和散射过程,提供有关材料的结构、电子、光学和化学性质的丰富详细信息,这些过程发生在不同的长度、能量和时间尺度上。不幸的是,光的波动性限制了通过探测和成像材料来实现的空间分辨率,大约为 λ/2,这是由于衍射造成的。扫描近场光学显微镜(SNOM)通过将光耦合到专门设计用于从非常小的空间区域中操纵、增强和/或提取光学信号的纳米结构来突破这个衍射极限。在过去 30 年中,SNOM 领域的进展导致了许多方法的发展,这些方法可以以低于 100nm 的横向空间分辨率对材料进行光学特性分析。我们回顾了这些令人兴奋的发展,并展示了 SNOM 如何真正将光学成像和光谱学扩展到纳米尺度。