Briggs Brandi N, Stender Michael E, Muljadi Patrick M, Donnelly Meghan A, Winn Virginia D, Ferguson Virginia L
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States.
Department of Obstetrics and Gynecology, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO 80045, United States.
J Biomech. 2015 Jun 25;48(9):1524-32. doi: 10.1016/j.jbiomech.2015.03.032. Epub 2015 Apr 29.
Clinical practice requires improved techniques to assess human cervical tissue properties, especially at the internal os, or orifice, of the uterine cervix. Ultrasound elastography (UE) holds promise for non-invasively monitoring cervical stiffness throughout pregnancy. However, this technique provides qualitative strain images that cannot be linked to a material property (e.g., Young's modulus) without knowledge of the contact pressure under a rounded transvaginal transducer probe and correction for the resulting non-uniform strain dissipation. One technique to standardize elastogram images incorporates a material of known properties and uses one-dimensional, uniaxial Hooke's law to calculate Young's modulus within the compressed material half-space. However, this method does not account for strain dissipation and the strains that evolve in three-dimensional space. We demonstrate that an analytical approach based on 3D Hertzian contact mechanics provides a reasonable first approximation to correct for UE strain dissipation underneath a round transvaginal transducer probe and thus improves UE-derived estimates of tissue modulus. We validate the proposed analytical solution and evaluate sources of error using a finite element model. As compared to 1D uniaxial Hooke's law, the Hertzian contact-based solution yields significantly improved Young's modulus predictions in three homogeneous gelatin tissue phantoms possessing different moduli. We also demonstrate the feasibility of using this technique to image human cervical tissue, where UE-derived moduli estimations for the uterine cervix anterior lip agreed well with published, experimentally obtained values. Overall, UE with an attached reference standard and a Hertzian contact-based correction holds promise for improving quantitative estimates of cervical tissue modulus.
临床实践需要改进技术来评估人体宫颈组织特性,尤其是在子宫颈内口或开口处。超声弹性成像(UE)有望在整个孕期对宫颈硬度进行无创监测。然而,该技术提供的定性应变图像,在不知道圆形经阴道换能器探头下的接触压力以及未对由此产生的非均匀应变耗散进行校正的情况下,无法与材料特性(如杨氏模量)相关联。一种使弹性图图像标准化的技术采用一种已知特性的材料,并使用一维单轴胡克定律来计算压缩材料半空间内的杨氏模量。然而,这种方法没有考虑应变耗散以及在三维空间中演变的应变。我们证明,基于三维赫兹接触力学的分析方法为校正圆形经阴道换能器探头下方的UE应变耗散提供了合理的一阶近似,从而改进了基于UE的组织模量估计。我们使用有限元模型验证了所提出的解析解并评估了误差来源。与一维单轴胡克定律相比,基于赫兹接触的解在三种具有不同模量的均匀明胶组织模型中,能显著改善杨氏模量预测。我们还证明了使用该技术对人体宫颈组织成像的可行性,其中对子宫颈前唇基于UE的模量估计与已发表的实验获得值吻合良好。总体而言,配备附着参考标准和基于赫兹接触校正的UE有望改善宫颈组织模量的定量估计。