Casida Mark E, Huix-Rotllant Miquel
Département de Chimie Moléculaire, Institut de Chimie Moléculaire de Grenoble, Université Joseph Fourier (Grenoble I), 301 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France,
Top Curr Chem. 2016;368:1-60. doi: 10.1007/128_2015_632.
In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.
在他们著名的论文中,科恩(Kohn)和沙姆(Sham)为N个相互作用电子系统的基态能量和密度制定了一种形式上精确的密度泛函理论(DFT),尽管当时受到某些令人困扰的可表示性问题的限制。由于当时还不知道交换关联(xc)能量泛函的实际精确形式,xc泛函必须进行近似,理想情况下是用局域或半局域泛函。然而如今,意识到自然界并非总是如此近视,促使我们沿着佩德韦(Perdew)的雅各布天梯向上攀登,去寻找越来越非局域的密度/波函数混合泛函。含时(TD-)DFT是一个较新的发展成果,它使DFT概念能够用于描述在微扰场存在下密度的时间演化。线性响应(LR)理论则允许从TD-DFT中提取关于激发态的光谱和其他信息。同样,在实际计算中必须对精确的TD-DFT xc泛函进行近似,历史上这是通过TD-DFT绝热近似(AA)来完成的,AA对于TD-DFT的作用与局域密度近似(LDA)对于传统基态DFT的作用非常相似。尽管TD-DFT的一些最新进展集中在AA框架内可以做的事情上,但其他一些进展则探索绕过AA的方法。在对DFT、TD-DFT和LR-TD-DFT进行概述之后,本章重点关注对LR-TD-DFT的多体修正,这是构建混合密度泛函/波函数方法的一种方式,用于纳入AA中不存在的时间方面的非局域性。