Monino Enzo, Loos Pierre-François
Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Route de Narbonne, 31062 Toulouse, France.
J Chem Theory Comput. 2021 May 11;17(5):2852-2867. doi: 10.1021/acs.jctc.1c00074. Epub 2021 Mar 16.
Like adiabatic time-dependent density-functional theory (TD-DFT), the Bethe-Salpeter equation (BSE) formalism of many-body perturbation theory, in its static approximation, is "blind" to double (and higher) excitations, which are ubiquitous, for example, in conjugated molecules like polyenes. Here, we apply the spin-flip (which considers the lowest triplet state as the reference configuration instead of the singlet ground state) to the BSE formalism in order to access, in particular, double excitations. The present scheme is based on a spin-unrestricted version of the approximation employed to compute the charged excitations and screened Coulomb potential required for the BSE calculations. Dynamical corrections to the static BSE optical excitations are taken into account via an unrestricted generalization of our recently developed (renormalized) perturbative treatment. The performance of the present spin-flip BSE formalism is illustrated by computing excited-state energies of the beryllium atom, the hydrogen molecule at various bond lengths, and cyclobutadiene in its rectangular and square-planar geometries.
与绝热含时密度泛函理论(TD-DFT)类似,多体微扰理论的贝叶斯-萨尔皮特方程(BSE)形式体系在其静态近似中,对双(及更高阶)激发“视而不见”,而双激发在诸如多烯等共轭分子中普遍存在。在此,我们将自旋翻转(其将最低三重态视为参考构型而非单重基态)应用于BSE形式体系,以便特别获取双激发。本方案基于用于计算BSE计算所需的带电激发和屏蔽库仑势的近似的自旋非限制版本。通过对我们最近开发的(重整化)微扰处理进行非限制推广,考虑了对静态BSE光学激发的动态修正。通过计算铍原子、不同键长的氢分子以及矩形和平面正方形几何构型的环丁二烯的激发态能量,说明了当前自旋翻转BSE形式体系的性能。