Suppr超能文献

线粒体靶向阳离子抗氧化剂及其类似物的抗增殖作用:线粒体生物能量学和能量感应机制的作用

Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism.

作者信息

Cheng Gang, Zielonka Jacek, McAllister Donna, Hardy Micael, Ouari Olivier, Joseph Joy, Dwinell Michael B, Kalyanaraman Balaraman

机构信息

Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France.

出版信息

Cancer Lett. 2015 Aug 28;365(1):96-106. doi: 10.1016/j.canlet.2015.05.016. Epub 2015 May 21.

Abstract

One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide.

摘要

一种提出的肿瘤增殖机制涉及由适度水平产生的超氧化物和过氧化氢等活性氧介导的氧化还原信号传导。因此,某些抗氧化剂的抗增殖和抗肿瘤作用归因于它们减轻细胞内活性氧(ROS)的能力。最近的报告支持线粒体ROS在刺激肿瘤细胞增殖中的作用。在本研究中,我们比较了一种具有超氧化物歧化酶(SOD)样活性的线粒体靶向阳离子羧基丙氧基氮氧化物(Mito-CP)和一种缺乏负责SOD活性的氮氧化物部分的合成阳离子乙酰胺类似物(Mito-CP-Ac)的抗增殖作用及其对线粒体生物能量功能的影响。结果表明,Mito-CP和Mito-CP-Ac均能有效抑制肿瘤细胞增殖。两种化合物都改变了线粒体和糖酵解功能以及细胞内柠檬酸水平。Mito-CP和Mito-CP-Ac均与2-脱氧葡萄糖(2-DG)协同作用,以耗尽细胞内ATP、抑制细胞增殖并诱导胰腺癌细胞凋亡。我们得出结论,线粒体靶向阳离子剂通过修饰线粒体生物能量途径而非通过使线粒体超氧化物歧化和解毒来抑制肿瘤增殖。

相似文献

2
Mitochondria-targeted antioxidant and glycolysis inhibition: synergistic therapy in hepatocellular carcinoma.
Anticancer Drugs. 2013 Oct;24(9):881-8. doi: 10.1097/CAD.0b013e32836442c6.
6
Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death.
Cancer Res. 2012 May 15;72(10):2634-44. doi: 10.1158/0008-5472.CAN-11-3928. Epub 2012 Mar 19.
8
Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy.
Free Radic Biol Med. 2016 Jan;90:12-23. doi: 10.1016/j.freeradbiomed.2015.11.013. Epub 2015 Nov 11.
9
Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation.
J Biol Chem. 2018 Sep 21;293(38):14891-14904. doi: 10.1074/jbc.RA117.001469. Epub 2018 Aug 7.
10
Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary thyroid carcinoma cell survival in vitro and in vivo.
J Clin Endocrinol Metab. 2013 Apr;98(4):1529-40. doi: 10.1210/jc.2012-3671. Epub 2013 Mar 18.

引用本文的文献

3
Metabolic plasticity in pancreatic cancer: The mitochondrial connection.
Mol Metab. 2025 Feb;92:102089. doi: 10.1016/j.molmet.2024.102089. Epub 2024 Dec 28.
4
The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis.
Front Pharmacol. 2023 Oct 25;14:1243613. doi: 10.3389/fphar.2023.1243613. eCollection 2023.
5
Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress.
Mini Rev Med Chem. 2024;24(9):908-919. doi: 10.2174/0113895575259219230920093214.
8
Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells.
Sci Rep. 2023 May 4;13(1):7254. doi: 10.1038/s41598-023-34266-w.
9
Fluorinated triphenylphosphonium analogs improve cell selectivity and detection of mito-metformin.
iScience. 2022 Nov 26;25(12):105670. doi: 10.1016/j.isci.2022.105670. eCollection 2022 Dec 22.
10
Synthesis and Antiproliferative Activity of Triphenylphosphonium Derivatives of Natural Allylpolyalkoxybenzenes.
ACS Omega. 2022 Jan 24;7(4):3369-3383. doi: 10.1021/acsomega.1c05515. eCollection 2022 Feb 1.

本文引用的文献

1
AMPK: positive and negative regulation, and its role in whole-body energy homeostasis.
Curr Opin Cell Biol. 2015 Apr;33:1-7. doi: 10.1016/j.ceb.2014.09.004. Epub 2014 Sep 26.
2
Combined cancer therapy with non-conventional drugs: all roads lead to AMPK.
Mini Rev Med Chem. 2014;14(8):642-54. doi: 10.2174/1389557514666140820104444.
3
Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12486-91. doi: 10.1073/pnas.1402012111. Epub 2014 Aug 11.
4
Targeting antioxidants for cancer therapy.
Biochem Pharmacol. 2014 Nov 1;92(1):90-101. doi: 10.1016/j.bcp.2014.07.017. Epub 2014 Jul 28.
5
Targeting cancer cells via the reactive oxygen species-mediated unfolded protein response with a novel synthetic polyphenol conjugate.
Clin Cancer Res. 2014 Aug 15;20(16):4302-13. doi: 10.1158/1078-0432.CCR-14-0424. Epub 2014 Jun 17.
6
Mitochondria-targeted spin traps: synthesis, superoxide spin trapping, and mitochondrial uptake.
Chem Res Toxicol. 2014 Jul 21;27(7):1155-65. doi: 10.1021/tx500032e. Epub 2014 Jun 13.
7
Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation.
Br J Cancer. 2014 Jul 8;111(1):85-93. doi: 10.1038/bjc.2014.272. Epub 2014 May 27.
8
NADPH oxidases as therapeutic targets in chronic myelogenous leukemia.
Clin Cancer Res. 2014 Aug 1;20(15):4014-25. doi: 10.1158/1078-0432.CCR-13-3044. Epub 2014 May 15.
9
Canonical and new generation anticancer drugs also target energy metabolism.
Arch Toxicol. 2014 Jul;88(7):1327-50. doi: 10.1007/s00204-014-1246-2. Epub 2014 May 4.
10
Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies.
Cancer Biol Med. 2014 Mar;11(1):1-19. doi: 10.7497/j.issn.2095-3941.2014.01.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验