Suppr超能文献

相似文献

1
Molecular mechanism of resolving trinucleotide repeat hairpin by helicases.
Structure. 2015 Jun 2;23(6):1018-27. doi: 10.1016/j.str.2015.04.006. Epub 2015 May 21.
2
Srs2 helicase of Saccharomyces cerevisiae selectively unwinds triplet repeat DNA.
J Biol Chem. 2005 Sep 30;280(39):33311-7. doi: 10.1074/jbc.M503325200. Epub 2005 Aug 4.
3
Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae.
Nucleic Acids Res. 2008 Jun;36(10):3366-73. doi: 10.1093/nar/gkn225. Epub 2008 Apr 25.
4
Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
Mol Cell Biol. 2004 Sep;24(17):7324-30. doi: 10.1128/MCB.24.17.7324-7330.2004.
6
SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination.
Nat Struct Mol Biol. 2009 Feb;16(2):159-67. doi: 10.1038/nsmb.1544. Epub 2009 Jan 11.
7
Overcoming natural replication barriers: differential helicase requirements.
Nucleic Acids Res. 2012 Feb;40(3):1091-105. doi: 10.1093/nar/gkr836. Epub 2011 Oct 7.
9
Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Jan;27(1):102-10. doi: 10.1128/MCB.01167-06. Epub 2006 Oct 23.
10
A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
Biochem Biophys Res Commun. 2011 Oct 7;413(4):532-6. doi: 10.1016/j.bbrc.2011.08.130. Epub 2011 Sep 6.

引用本文的文献

1
Parity-dependent hairpin configurations of repetitive DNA sequence promote slippage associated with DNA expansion.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9535-9540. doi: 10.1073/pnas.1708691114. Epub 2017 Aug 21.

本文引用的文献

1
Context-dependent remodeling of Rad51-DNA complexes by Srs2 is mediated by a specific protein-protein interaction.
J Mol Biol. 2014 May 1;426(9):1883-97. doi: 10.1016/j.jmb.2014.02.014. Epub 2014 Feb 24.
2
To switch or not to switch: at the origin of repeat expansion disease.
Mol Cell. 2014 Jan 9;53(1):1-3. doi: 10.1016/j.molcel.2013.12.021.
3
Srs2 prevents Rad51 filament formation by repetitive motion on DNA.
Nat Commun. 2013;4:2281. doi: 10.1038/ncomms3281.
4
Sequence-dependent base pair stepping dynamics in XPD helicase unwinding.
Elife. 2013 May 28;2:e00334. doi: 10.7554/eLife.00334.
5
Overcoming natural replication barriers: differential helicase requirements.
Nucleic Acids Res. 2012 Feb;40(3):1091-105. doi: 10.1093/nar/gkr836. Epub 2011 Oct 7.
6
Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7414-8. doi: 10.1073/pnas.1017672108. Epub 2011 Apr 18.
7
Hallmarks of cancer: the next generation.
Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.
8
PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps.
Cell. 2010 Aug 20;142(4):544-55. doi: 10.1016/j.cell.2010.07.016.
9
Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells.
Nat Chem Biol. 2010 Sep;6(9):652-9. doi: 10.1038/nchembio.416. Epub 2010 Aug 1.
10
The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions.
J Biol Chem. 2010 Mar 12;285(11):8290-301. doi: 10.1074/jbc.M109.083196. Epub 2010 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验