Suppr超能文献

酿酒酵母Srs2 DNA解旋酶可选择性地阻断三核苷酸重复序列的扩增。

Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.

作者信息

Bhattacharyya Saumitri, Lahue Robert S

机构信息

Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, USA.

出版信息

Mol Cell Biol. 2004 Sep;24(17):7324-30. doi: 10.1128/MCB.24.17.7324-7330.2004.

Abstract

Trinucleotide repeats (TNRs) undergo frequent mutations in families afflicted with certain neurodegenerative disorders and in model organisms. TNR instability is modulated both by the repeat tract itself and by cellular proteins. Here we identified the Saccharomyces cerevisiae DNA helicase Srs2 as a potent and selective inhibitor of expansions. srs2 mutants had up to 40-fold increased expansion rates of CTG, CAG, and CGG repeats. The expansion phenotype was specific, as mutation rates at dinucleotide repeats, at unique sequences, or for TNR contractions in srs2 mutants were not altered. Srs2 is known to suppress inappropriate genetic recombination; however, the TNR expansion phenotype of srs2 mutants was largely independent of RAD51 and RAD52. Instead, Srs2 mainly functioned with DNA polymerase delta to block expansions. The helicase activity of Srs2 was important, because a point mutant lacking ATPase function was defective in blocking expansions. Purified Srs2 was substantially better than bacterial UvrD helicase at in vitro unwinding of a DNA substrate that mimicked a TNR hairpin. Disruption of the related helicase gene SGS1 did not lead to excess expansions, nor did wild-type SGS1 suppress the expansion phenotype of an srs2 strain. We conclude that Srs2 selectively blocks triplet repeat expansions through its helicase activity and primarily in conjunction with polymerase delta.

摘要

三核苷酸重复序列(TNRs)在患有某些神经退行性疾病的家族以及模式生物中经常发生突变。TNR的不稳定性受到重复序列本身和细胞蛋白的调节。在这里,我们鉴定出酿酒酵母DNA解旋酶Srs2是一种强大且具有选择性的重复序列扩增抑制剂。srs2突变体中CTG、CAG和CGG重复序列的扩增率增加了40倍之多。这种扩增表型具有特异性,因为srs2突变体中二核苷酸重复序列、独特序列处的突变率,或TNR收缩的突变率并未改变。已知Srs2可抑制不适当的基因重组;然而,srs2突变体的TNR扩增表型在很大程度上独立于RAD51和RAD52。相反,Srs2主要与DNA聚合酶δ协同作用来阻止扩增。Srs2的解旋酶活性很重要,因为一个缺乏ATP酶功能的点突变体在阻止扩增方面存在缺陷。在体外解开模拟TNR发夹的DNA底物方面,纯化的Srs2比细菌UvrD解旋酶要好得多。相关解旋酶基因SGS1的破坏不会导致过度扩增,野生型SGS1也不会抑制srs2菌株的扩增表型。我们得出结论,Srs2通过其解旋酶活性,主要与聚合酶δ协同作用,选择性地阻止三联体重复序列的扩增。

相似文献

1
Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
Mol Cell Biol. 2004 Sep;24(17):7324-30. doi: 10.1128/MCB.24.17.7324-7330.2004.
2
Srs2 helicase of Saccharomyces cerevisiae selectively unwinds triplet repeat DNA.
J Biol Chem. 2005 Sep 30;280(39):33311-7. doi: 10.1074/jbc.M503325200. Epub 2005 Aug 4.
3
Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Jan;27(1):102-10. doi: 10.1128/MCB.01167-06. Epub 2006 Oct 23.
5
Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae.
Nucleic Acids Res. 2008 Jun;36(10):3366-73. doi: 10.1093/nar/gkn225. Epub 2008 Apr 25.
7
SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination.
Nat Struct Mol Biol. 2009 Feb;16(2):159-67. doi: 10.1038/nsmb.1544. Epub 2009 Jan 11.
8
Molecular mechanism of resolving trinucleotide repeat hairpin by helicases.
Structure. 2015 Jun 2;23(6):1018-27. doi: 10.1016/j.str.2015.04.006. Epub 2015 May 21.
9
Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
DNA Repair (Amst). 2007 Jan 4;6(1):38-44. doi: 10.1016/j.dnarep.2006.08.002. Epub 2006 Sep 15.
10
Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
DNA Repair (Amst). 2014 Jan;13:42-9. doi: 10.1016/j.dnarep.2013.11.004. Epub 2013 Dec 17.

引用本文的文献

3
Modifiers of CAG/CTG Repeat Instability: Insights from Mammalian Models.
J Huntingtons Dis. 2021;10(1):123-148. doi: 10.3233/JHD-200426.
4
On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability.
J Biol Chem. 2020 Mar 27;295(13):4134-4170. doi: 10.1074/jbc.REV119.007678. Epub 2020 Feb 14.
5
Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase.
Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):E10041-E10048. doi: 10.1073/pnas.1810457115. Epub 2018 Oct 9.
6
Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics.
Trends Genet. 2018 Jun;34(6):448-465. doi: 10.1016/j.tig.2018.02.005. Epub 2018 Mar 19.
7
Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2.
Nat Commun. 2017 Nov 27;8(1):1790. doi: 10.1038/s41467-017-01987-2.
8
Role of recombination and replication fork restart in repeat instability.
DNA Repair (Amst). 2017 Aug;56:156-165. doi: 10.1016/j.dnarep.2017.06.018. Epub 2017 Jun 9.
10
Break-induced replication: an unhealthy choice for stress relief?
Nat Struct Mol Biol. 2017 Jan 5;24(1):11-12. doi: 10.1038/nsmb.3361.

本文引用的文献

1
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
2
Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
Mol Cell Biol. 2004 May;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
4
Nuclease-deficient FEN-1 blocks Rad51/BRCA1-mediated repair and causes trinucleotide repeat instability.
Mol Cell Biol. 2003 Sep;23(17):6063-74. doi: 10.1128/MCB.23.17.6063-6074.2003.
5
The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments.
Nature. 2003 May 15;423(6937):309-12. doi: 10.1038/nature01585.
6
DNA helicase Srs2 disrupts the Rad51 presynaptic filament.
Nature. 2003 May 15;423(6937):305-9. doi: 10.1038/nature01577.
8
Replication and expansion of trinucleotide repeats in yeast.
Mol Cell Biol. 2003 Feb;23(4):1349-57. doi: 10.1128/MCB.23.4.1349-1357.2003.
9
Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion.
J Biol Chem. 2003 Apr 18;278(16):13728-39. doi: 10.1074/jbc.M212061200. Epub 2003 Jan 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验