Maier M, Müller K W, Heussinger C, Köhler S, Wall W A, Bausch A R, Lieleg O
Lehrstuhl für Zellbiophysik E27, Physik-Department, Technische Universität München, Garching, Germany.
Eur Phys J E Soft Matter. 2015 May;38(5):136. doi: 10.1140/epje/i2015-15050-3. Epub 2015 May 27.
Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.
肌动蛋白结合蛋白(ABP)不仅决定肌动蛋白丝组装的结构,还介导交联和束状肌动蛋白网络的频率依赖性粘弹性模量。这些ABP的肌动蛋白结合域中的点突变可以调节肌动蛋白/ABP键的缔合和解离动力学,从而在线性和非线性响应范围内调节网络力学。我们在此展示了在ABP成束蛋白的肌动蛋白结合域中单个带电氨基酸的交换如何引发网络流变学的这种调节。虽然束状网络的整体结构是保守的,但从应变硬化到应变弱化的转变点敏感地取决于交联剂解离速率和施加的剪切速率。我们的实验结果与交联束状网络的数值模拟以及基于非仿射弯曲变形和力依赖性交联动力学的束状网络力学的理论描述均一致。