Shkel Irina A, Record M Thomas
Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Soft Matter. 2012 Aug 23;8(36):9345-9355. doi: 10.1039/C2SM25607J.
We investigate how the coulombic Gibbs free energy and salt ion association per phosphate charge of DNA oligomers vary with oligomer size ( number of charged residues ∣∣) at 0.15 M univalent salt by non-linear Poisson Boltzmann (NLPB) analysis of all-atom DNA models. Calculations of these quantities ([Formula: see text], [Formula: see text]) are performed for short and long double-stranded (ds) and single-stranded (ss) DNA oligomers, ranging from 4 to 118 phosphates (ds) and from 2 to 59 phosphates (ss). Behaviors of [Formula: see text] and [Formula: see text] as functions of ∣∣ provide a measure of the range of the coulombic end effect and determine the size of an oligomer at which an interior region with the properties (per charge) of the infinite-length polyelectrolyte first appears. This size (10-11 phosphates at each end for ds DNA and 6-9 for ss DNA at 0.15 M salt) is in close agreement with values obtained previously by Monte Carlo and NLPB calculations for cylindrical models of polyions, and by analysis of binding of oligocations to DNA oligomers. Differences in [Formula: see text] and in [Formula: see text] between ss and ds DNA are used to predict effects of oligomeric size and salt concentration on duplex stability in the vicinity of 0.15 M salt. Results of all-atom calculations are compared with results of less structurally detailed models and with experimental data.
我们通过对全原子DNA模型进行非线性泊松-玻尔兹曼(NLPB)分析,研究了在0.15 M单价盐条件下,DNA寡聚物的库仑吉布斯自由能和每个磷酸电荷的盐离子缔合如何随寡聚物大小(带电残基数量∣∣)变化。对短链和长链双链(ds)及单链(ss)DNA寡聚物进行了这些量([公式:见原文],[公式:见原文])的计算,其磷酸盐数量范围为4至118个(ds)以及2至59个(ss)。[公式:见原文]和[公式:见原文]作为∣∣的函数的行为提供了库仑端效应范围的一种度量,并确定了寡聚物的大小,在该大小下首次出现具有无限长聚电解质(每个电荷)性质的内部区域。这个大小(在0.15 M盐浓度下,ds DNA两端各为10 - 11个磷酸盐,ss DNA为6 - 9个)与先前通过蒙特卡罗和NLPB计算多离子圆柱模型以及通过分析寡阳离子与DNA寡聚物结合所获得的值密切一致。ss和ds DNA之间[公式:见原文]和[公式:见原文]的差异用于预测在0.15 M盐附近寡聚物大小和盐浓度对双链稳定性的影响。将全原子计算结果与结构细节较少的模型结果以及实验数据进行了比较。