Suppr超能文献

从头算分子动力学模拟揭示水溶液中水合电子向核碱基的转移

Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

作者信息

Zhao Jing, Wang Mei, Fu Aiyun, Yang Hongfang, Bu Yuxiang

机构信息

School of Chemistry and Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100 (P. R. China).

Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou 253023 (P. R. China).

出版信息

Chemphyschem. 2015 Aug 3;16(11):2348-56. doi: 10.1002/cphc.201500040. Epub 2015 May 28.

Abstract

We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution.

摘要

我们开展了一项从头算分子动力学(AIMD)模拟研究,探究过量电子从其腔状水合电子态转移至水合核碱基(NB)结合态的转移动力学。与传统观点不同,传统观点认为电子在核碱基(鸟嘌呤/腺嘌呤/胞嘧啶/胸腺嘧啶)处的定位是电子诱导DNA损伤的第一步,仅与干燥或预水合电子有关,而完全水合的电子不再转移至核碱基,我们的AIMD模拟表明完全水合的电子仍可转移至核碱基。我们通过AIMD模拟监测了水溶液中完全水合电子向水合核碱基的转移动力学,发现由于溶液结构波动和核碱基的吸引,完全水合的电子会随着时间逐渐转移至核碱基。同时,水合电子腔会逐渐重新组织、扭曲甚至破裂。在四种水合核碱基水溶液中,转移可在约120 - 200飞秒内完成,这取决于水合核碱基的电子结合能力和溶液的结构波动。转移的电子驻留在核碱基的π*型最低未占分子轨道中,从而形成水合核碱基阴离子。显然,观察到的水合电子转移可归因于水合核碱基对水合电子腔的强电子结合能力,这是驱动力,且转移动力学受结构波动控制。这项工作为水合电子的演化动力学提供了新的见解,并为理解溶液中的DNA损伤机制提供了一些有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验