Suppr超能文献

通过从头算分子动力学研究水合电子的结构、动力学和反应性。

Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.

机构信息

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.

出版信息

Acc Chem Res. 2012 Jan 17;45(1):23-32. doi: 10.1021/ar200062m. Epub 2011 Sep 7.

Abstract

Understanding the properties of hydrated electrons, which were first observed using pulse radiolysis of water in 1962, is crucial because they are key species in many radiation chemistry processes. Although time-resolved spectroscopic studies and molecular simulations have shown that an electron in water (prepared, for example, by water photoionization) relaxes quickly to a localized, cavity-like structure ∼2.5 Å in radius, this picture has recently been questioned. In another experimental approach, negatively charged water clusters of increasing size were studied with photoelectron and IR spectroscopies. Although small water clusters can bind an excess electron, their character is very different from bulk hydrated species. As data on electron binding in liquid water have become directly accessible experimentally, the cluster-to-bulk extrapolations have become a topic of lively debate. Quantum electronic structure calculations addressing experimental measurables have, until recently, been largely limited to small clusters; extended systems were approached mainly with pseudopotential calculations combining a classical description of water with a quantum mechanical treatment of the excess electron. In this Account, we discuss our investigations of electrons solvated in water by means of ab initio molecular dynamics simulations. This approach, applied to a model system of a negatively charged cluster of 32 water molecules, allows us to characterize structural, dynamical, and reactive aspects of the hydrated electron using all of the system's valence electrons. We show that under ambient conditions, the electron localizes into a cavity close to the surface of the liquid cluster. This cavity is, however, more flexible and accessible to water molecules than an analogous area around negatively charged ions. The dynamical process of electron attachment to a neutral water cluster is strongly temperature dependent. Under ambient conditions, the electron relaxes in the liquid cluster and becomes indistinguishable from an equilibrated, solvated electron on a picosecond time scale. In contrast, for solid, cryogenic systems, the electron only partially localizes outside of the cluster, being trapped in a metastable, weakly bound "cushion-like" state. Strongly bound states under cryogenic conditions could only be prepared by cooling equilibrated, liquid, negatively charged clusters. These calculations allow us to rationalize how different isomers of electrons in cryogenic clusters can be observed experimentally. Our results also bring into question the direct extrapolation of properties of cryogenic, negatively charged water clusters to those of electrons in the bulk liquid. Ab initio molecular dynamics represents a unique computational tool for investigating the reactivity of the solvated electron in water. As a prototype, the electron-proton reaction was followed in the 32-water cluster. In accord with experiment, the molecular mechanism is a proton transfer process that is not diffusion limited, but rather controlled by a proton-induced deformation of the excess electron's solvent shell. We demonstrate the necessary ingredients of a successful density functional methodology for the hydrated electron that avoids potential pitfalls, such as self-interaction error, insufficient basis set, or lack of dispersion interactions. We also benchmark the density functional theory methods and outline the path to faithful ab initio simulations of dynamics and reactivity of electrons solvated in extended aqueous systems.

摘要

理解水合电子的性质至关重要,因为它们是许多辐射化学过程中的关键物种。水合电子于 1962 年首次通过脉冲辐解水被观察到。虽然时间分辨光谱研究和分子模拟表明,水中的电子(例如通过水光电离制备)很快弛豫到半径约为 2.5Å 的局部、腔状结构,但最近这一观点受到了质疑。在另一种实验方法中,用光电电子和红外光谱研究了尺寸不断增大的带负电荷的水分子簇。尽管小的水分子簇可以结合一个多余的电子,但它们的性质与体相水合物质非常不同。随着关于液态水中电子结合的实验数据变得直接可获得,对从簇到体相的外推成为了激烈争论的话题。直到最近,处理实验可测量的量子电子结构计算在很大程度上仅限于小簇;通过将水分子的经典描述与对多余电子的量子力学处理相结合的赝势计算,主要处理扩展系统。在本综述中,我们讨论了我们通过从头算分子动力学模拟研究水中溶剂化电子的情况。该方法应用于一个带负电的 32 个水分子簇模型系统,使我们能够使用系统的所有价电子来描述水合电子的结构、动力学和反应性方面。我们表明,在环境条件下,电子在靠近液体簇表面的腔中局部化。然而,这个腔比带负电离子周围的类似区域更灵活,更容易被水分子进入。电子与中性水分子簇的附着动力学过程强烈依赖于温度。在环境条件下,电子在液体簇中弛豫,在皮秒时间尺度上与平衡、溶剂化电子无法区分。相比之下,对于固态、低温系统,电子仅部分地在簇外局部化,被捕获在亚稳态、弱束缚的“缓冲状”状态中。低温条件下的强束缚态只能通过冷却平衡的、液态的、带负电的簇来制备。这些计算使我们能够解释为什么在低温簇中可以观察到不同的电子异构体。我们的结果也对直接推断低温、带负电的水分子簇的性质到液体中的电子的性质提出了质疑。从头算分子动力学是研究水中溶剂化电子反应性的独特计算工具。作为一个原型,我们在 32 个水分子簇中跟踪了电子-质子反应。与实验一致,分子机制是质子转移过程,不受扩散限制,而是受质子诱导的多余电子溶剂壳变形控制。我们展示了一种成功的水合电子密度泛函方法所必需的成分,这种方法避免了自相互作用误差、基组不足或缺乏色散相互作用等潜在陷阱。我们还对密度泛函理论方法进行了基准测试,并概述了在扩展水相系统中对电子溶剂化动力学和反应性进行忠实从头算模拟的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验