Cahoon Rebecca E, Lutke W Kevin, Cameron Jeffrey C, Chen Sixue, Lee Soon Goo, Rivard Rebecca S, Rea Philip A, Jez Joseph M
From the Department of Biology, Washington University, St. Louis, Missouri 63130, the Donald Danforth Plant Science Center, St. Louis, Missouri 63132.
the Donald Danforth Plant Science Center, St. Louis, Missouri 63132.
J Biol Chem. 2015 Jul 10;290(28):17321-30. doi: 10.1074/jbc.M115.652123. Epub 2015 May 27.
Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation.
代谢工程方法越来越多地应用于环境领域。由于植物螯合肽(PC)能保护植物免受重金属毒性影响,因此针对调控这些肽生物合成的策略有望用于修复受重金属污染的土壤和地下水。对拟南芥植物螯合肽合酶(AtPCS1)进行定向进化产生的突变体,在酿酒酵母、拟南芥或芥菜中赋予的镉耐受性和积累水平高于野生型酶的表达。令人惊讶的是,增强镉耐受性和积累的AtPCS1突变体的催化效率低于野生型酶。代谢物分析表明,用AtPCS1而非突变体变体转化后,在接触镉时会降低PC前体谷胱甘肽和γ-谷氨酰半胱氨酸的水平。选择催化活性降低的AtPCS1变体可缓解这些代谢物的消耗,在镉暴露期间维持氧化还原稳态的同时支持PC合成。这些结果强调了代谢背景对途径工程的重要性,并拓宽了可用于环境修复的工具范围。