Department of Biology, Washington University, St Louis, Missouri 63130, USA.
J Biol Chem. 2013 Mar 1;288(9):6107-15. doi: 10.1074/jbc.M112.439414. Epub 2013 Jan 15.
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine 5'-phosphosulfate (APS) to 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Crystallographic studies of APSK from Arabidopsis thaliana revealed the presence of a regulatory intersubunit disulfide bond (Cys(86)-Cys(119)). The reduced enzyme displayed improved catalytic efficiency and decreased effectiveness of substrate inhibition by APS compared with the oxidized form. Here we examine the effect of disulfide formation and the role of the N-terminal domain on nucleotide binding using isothermal titration calorimetry (ITC) and steady-state kinetics. Formation of the disulfide bond in A. thaliana APSK (AtAPSK) inverts the binding affinities at the ATP/ADP and APS/PAPS sites from those observed in the reduced enzyme, consistent with initial binding of APS as inhibitory, and suggests a role for the N-terminal domain in guiding nucleotide binding order. To test this, an N-terminal truncation variant (AtAPSKΔ96) was generated. The resulting protein was completely insensitive to substrate inhibition by APS. ITC analysis of AtAPSKΔ96 showed decreased affinity for APS binding, although the N-terminal domain does not directly interact with this ligand. Moreover, AtAPSKΔ96 displayed reduced affinity for ADP, which corresponds to a loss of substrate inhibition by formation of an E·ADP·APS dead end complex. Examination of the AtAPSK crystal structure suggested Arg(93) as important for positioning of the N-terminal domain. ITC and kinetic analysis of the R93A mutant also showed a complete loss of substrate inhibition and altered nucleotide binding affinities, which mimics the effect of the N-terminal deletion. These results show how thiol-linked changes in AtAPSK alter the energetics of binding equilibria to control its activity.
腺苷 5'-磷酸硫酸激酶 (APSK) 催化腺苷 5'-磷酸硫酸 (APS) 磷酸化为 3'-磷酸腺苷-5'-磷酸硫酸 (PAPS)。来自拟南芥的 APSK 的晶体结构研究表明存在调节亚基二硫键 (Cys(86)-Cys(119))。与氧化形式相比,还原酶显示出改善的催化效率和降低的 APS 对底物抑制的效力。在这里,我们使用等温滴定量热法 (ITC) 和稳态动力学研究二硫键形成的影响和 N 端结构域对核苷酸结合的作用。拟南芥 APSK (AtAPSK) 中二硫键的形成使 ATP/ADP 和 APS/PAPS 位点的结合亲和力与还原酶中观察到的亲和力相反,这与 APS 最初结合为抑制性一致,并表明 N 端结构域在指导核苷酸结合顺序中起作用。为此,生成了 N 端截断变体 (AtAPSKΔ96)。得到的蛋白质完全不受 APS 对底物抑制的影响。AtAPSKΔ96 的 ITC 分析显示 APS 结合亲和力降低,尽管 N 端结构域不直接与该配体相互作用。此外,AtAPSKΔ96 对 ADP 的亲和力降低,这对应于形成 E·ADP·APS 末端复合物时底物抑制的丧失。对 AtAPSK 晶体结构的研究表明 Arg(93) 对 N 端结构域的定位很重要。R93A 突变体的 ITC 和动力学分析也显示出完全丧失的底物抑制和改变的核苷酸结合亲和力,这模拟了 N 端缺失的影响。这些结果表明,拟南芥 APSK 中硫醇连接的变化如何改变结合平衡的能量学来控制其活性。