Yanagida Shozo, Yanagisawa Susumu, Yamashita Koichi, Jono Ryota, Segawa Hiroshi
Frontier Research Institute, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan.
Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1, Senbaru, Nishihara, Okinawa 903-0213, Japan.
Molecules. 2015 May 27;20(6):9732-44. doi: 10.3390/molecules20069732.
Mesoscopic anatase nanocrystalline TiO2 (nc-TiO2) electrodes play effective and efficient catalytic roles in photoelectrochemical (PEC) H2O oxidation under short circuit energy gap excitation conditions. Interfacial molecular orbital structures of (H2O)3 &OH(TiO2)9H as a stationary model under neutral conditions and the radical-cation model of [(H2O)3&OH(TiO2)9H]+ as a working nc-TiO2 model are simulated employing a cluster model OH(TiO2)9H (Yamashita/Jono's model) and a H2O cluster model of (H2O)3 to examine excellent H2O oxidation on nc-TiO2 electrodes in PEC cells. The stationary model, (H2O)3&OH(TiO2)9H reveals that the model surface provides catalytic H2O binding sites through hydrogen bonding, van der Waals and Coulombic interactions. The working model, [(H2O)3&OH(TiO2)9H]+ discloses to have a very narrow energy gap (0.3 eV) between HOMO and LUMO potentials, proving that PEC nc-TiO2 electrodes become conductive at photo-irradiated working conditions. DFT-simulation of stepwise oxidation of a hydroxide ion cluster model of OH-(H2O)3, proves that successive two-electron oxidation leads to hydroxyl radical clusters, which should give hydrogen peroxide as a precursor of oxygen molecules. Under working bias conditions of PEC cells, nc-TiO2 electrodes are now verified to become conductive by energy gap photo-excitation and the electrode surface provides powerful oxidizing sites for successive H2O oxidation to oxygen via hydrogen peroxide.
介观锐钛矿纳米晶TiO₂(nc-TiO₂)电极在短路能隙激发条件下的光电化学(PEC)水氧化过程中发挥着高效的催化作用。采用簇模型OH(TiO₂)₉H(山下/乔诺模型)和(H₂O)₃的H₂O簇模型,模拟了中性条件下(H₂O)₃&OH(TiO₂)₉H作为稳态模型以及[(H₂O)₃&OH(TiO₂)₉H]+作为工作nc-TiO₂模型的自由基阳离子模型的界面分子轨道结构,以研究PEC电池中nc-TiO₂电极上优异的水氧化性能。稳态模型(H₂O)₃&OH(TiO₂)₉H表明,该模型表面通过氢键、范德华力和库仑相互作用提供催化水结合位点。工作模型[(H₂O)₃&OH(TiO₂)₉H]+揭示其最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)电位之间的能隙非常窄(0.3 eV),证明PEC nc-TiO₂电极在光照射工作条件下会变得导电。OH⁻(H₂O)₃氢氧根离子簇模型逐步氧化的密度泛函理论(DFT)模拟证明,连续的双电子氧化会导致羟基自由基簇,这应该会产生作为氧分子前体的过氧化氢。在PEC电池的工作偏置条件下,现在已证实nc-TiO₂电极通过能隙光激发变得导电,并且电极表面为通过过氧化氢将水连续氧化为氧提供了强大的氧化位点。