Suppr超能文献

一种非单调强度编码模型。

A model for non-monotonic intensity coding.

作者信息

Nehrkorn Johannes, Tanimoto Hiromu, Herz Andreas V M, Yarali Ayse

机构信息

Department of Biology II, Bernstein Center for Computational Neuroscience Munich and Graduate School of Systemic Neurosciences , Ludwig-Maximilians-Universität München , Martinsried 82152, Germany ; Max Planck Institute of Neurobiology , Martinsried 82152, Germany.

Max Planck Institute of Neurobiology , Martinsried 82152, Germany ; Tohoku University Graduate School of Life Sciences , Sendai 980-8577, Japan.

出版信息

R Soc Open Sci. 2015 May 6;2(5):150120. doi: 10.1098/rsos.150120. eCollection 2015 May.

Abstract

Peripheral neurons of most sensory systems increase their response with increasing stimulus intensity. Behavioural responses, however, can be specific to some intermediate intensity level whose particular value might be innate or associatively learned. Learning such a preference requires an adjustable trans- formation from a monotonic stimulus representation at the sensory periphery to a non-monotonic representation for the motor command. How do neural systems accomplish this task? We tackle this general question focusing on odour-intensity learning in the fruit fly, whose first- and second-order olfactory neurons show monotonic stimulus-response curves. Nevertheless, flies form associative memories specific to particular trained odour intensities. Thus, downstream of the first two olfactory processing layers, odour intensity must be re-coded to enable intensity-specific associative learning. We present a minimal, feed-forward, three-layer circuit, which implements the required transformation by combining excitation, inhibition, and, as a decisive third element, homeostatic plasticity. Key features of this circuit motif are consistent with the known architecture and physiology of the fly olfactory system, whereas alternative mechanisms are either not composed of simple, scalable building blocks or not compatible with physiological observations. The simplicity of the circuit and the robustness of its function under parameter changes make this computational motif an attractive candidate for tuneable non-monotonic intensity coding.

摘要

大多数感觉系统的外周神经元会随着刺激强度的增加而增强其反应。然而,行为反应可能特定于某个中间强度水平,其具体值可能是先天的或通过联想学习获得的。学习这种偏好需要一种可调节的转换,即从感觉外周的单调刺激表征转换为用于运动指令的非单调表征。神经系统是如何完成这项任务的呢?我们聚焦于果蝇的气味强度学习来解决这个一般性问题,果蝇的一级和二级嗅觉神经元呈现出单调的刺激 - 反应曲线。然而,果蝇会形成特定于特定训练气味强度的联想记忆。因此,在前两个嗅觉处理层的下游,气味强度必须重新编码,以实现特定强度的联想学习。我们提出了一个最小化的前馈三层电路,它通过结合兴奋、抑制以及作为决定性第三要素的稳态可塑性来实现所需的转换。这个电路基序的关键特征与果蝇嗅觉系统已知的结构和生理学一致,而其他替代机制要么不是由简单、可扩展的构建模块组成,要么与生理学观察结果不兼容。该电路的简单性及其在参数变化下功能的稳健性使得这种计算基序成为可调节非单调强度编码的一个有吸引力的候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验