Suppr超能文献

帕金森病患者在无视觉反馈情况下的手指力量变化。

Finger force changes in the absence of visual feedback in patients with Parkinson's disease.

作者信息

Jo Hang Jin, Ambike Satyajit, Lewis Mechelle M, Huang Xuemei, Latash Mark L

机构信息

Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.

Department of Neurology, Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University - Milton S. Hershey Medical Center, Hershey, PA 17033, USA.

出版信息

Clin Neurophysiol. 2016 Jan;127(1):684-692. doi: 10.1016/j.clinph.2015.05.023. Epub 2015 Jun 3.

Abstract

OBJECTIVES

We investigated the unintentional drift in total force and in sharing of the force between fingers in two-finger accurate force production tasks performed without visual feedback by patients with Parkinson's disease (PD) and healthy controls. In particular, we were testing a hypothesis that adaptation to the documented loss of action stability could lead to faster force drop in PD.

METHODS

PD patients and healthy controls performed accurate constant force production tasks without visual feedback by different finger pairs, starting with different force levels and different sharing patterns of force between the two fingers.

RESULTS

Both groups showed an exponential force drop with time and a drift of the sharing pattern towards 50:50. The PD group showed a significantly faster force drop without a change in speed of the sharing drift. These results were consistent across initial force levels, sharing patterns, and finger pairs. A pilot test of four subjects, two PD and two controls, showed no consistent effects of memory on the force drop.

CONCLUSIONS

We interpret the force drop as a consequence of back-coupling between the actual and referent finger coordinates that draws the referent coordinate towards the actual one. The faster force drop in the PD group is interpreted as adaptive to the loss of action stability in PD. The lack of group differences in the sharing drift suggests two potentially independent physiological mechanisms contributing to the force and sharing drifts.

SIGNIFICANCE

The hypothesis on adaptive changes in PD with the purpose to ensure stability of steady states may have important implications for treatment of PD. The speed of force drop may turn into a useful tool to quantify such adaptive changes.

摘要

目的

我们研究了帕金森病(PD)患者和健康对照者在无视觉反馈的双指精确力产生任务中,总力以及手指间力分配的无意漂移情况。具体而言,我们在检验一个假设,即适应已记录的动作稳定性丧失可能导致PD患者力下降更快。

方法

PD患者和健康对照者通过不同手指对执行无视觉反馈的精确恒力产生任务,从不同的力水平和两指间不同的力分配模式开始。

结果

两组均显示力随时间呈指数下降,且分配模式向50:50漂移。PD组力下降明显更快,而分配漂移速度无变化。这些结果在初始力水平、分配模式和手指对之间是一致的。对四名受试者(两名PD患者和两名对照者)的初步测试显示,记忆对力下降没有一致的影响。

结论

我们将力下降解释为实际手指坐标与参考手指坐标之间反向耦合的结果,这种耦合将参考坐标拉向实际坐标。PD组力下降更快被解释为对PD患者动作稳定性丧失的适应性反应。分配漂移方面缺乏组间差异表明,有两种潜在独立的生理机制导致了力和分配漂移。

意义

关于PD适应性变化以确保稳态稳定性的假设可能对PD治疗具有重要意义。力下降速度可能成为量化此类适应性变化的有用工具。

相似文献

1
Finger force changes in the absence of visual feedback in patients with Parkinson's disease.
Clin Neurophysiol. 2016 Jan;127(1):684-692. doi: 10.1016/j.clinph.2015.05.023. Epub 2015 Jun 3.
2
Effects of visual feedback and memory on unintentional drifts in performance during finger-pressing tasks.
Exp Brain Res. 2017 Apr;235(4):1149-1162. doi: 10.1007/s00221-017-4878-7. Epub 2017 Feb 6.
3
Finger interdependence and unintentional force drifts: Lessons from manipulations of visual feedback.
Hum Mov Sci. 2020 Dec;74:102714. doi: 10.1016/j.humov.2020.102714. Epub 2020 Nov 6.
4
Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.
Neuroscience. 2017 May 14;350:94-109. doi: 10.1016/j.neuroscience.2017.03.022. Epub 2017 Mar 24.
5
The nature of constant and cyclic force production: unintentional force-drift characteristics.
Exp Brain Res. 2016 Jan;234(1):197-208. doi: 10.1007/s00221-015-4453-z. Epub 2015 Sep 29.
6
On the nature of unintentional action: a study of force/moment drifts during multifinger tasks.
J Neurophysiol. 2016 Aug 1;116(2):698-708. doi: 10.1152/jn.00180.2016. Epub 2016 May 18.
7
On the origin of finger enslaving: control with referent coordinates and effects of visual feedback.
J Neurophysiol. 2020 Dec 1;124(6):1625-1636. doi: 10.1152/jn.00322.2020. Epub 2020 Sep 30.
8
Performance drifts in two-finger cyclical force production tasks performed by one and two actors.
Exp Brain Res. 2018 Mar;236(3):779-794. doi: 10.1007/s00221-018-5179-5. Epub 2018 Jan 15.
9
Unintentional drifts in performance during one-hand and two-hand finger force production.
Exp Brain Res. 2023 Mar;241(3):699-712. doi: 10.1007/s00221-023-06559-z. Epub 2023 Jan 23.
10
Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance.
Exp Brain Res. 2017 Feb;235(2):481-496. doi: 10.1007/s00221-016-4809-z. Epub 2016 Oct 26.

引用本文的文献

1
Force matching: motor effects that are not reported by the actor.
Exp Brain Res. 2024 Jun;242(6):1439-1453. doi: 10.1007/s00221-024-06829-4. Epub 2024 Apr 23.
2
Clinical assessment of upper limb impairments and functional capacity in Parkinson's disease: a systematic review.
Arq Neuropsiquiatr. 2023 Nov;81(11):1008-1015. doi: 10.1055/s-0043-1772769. Epub 2023 Oct 29.
3
Unintentional force drifts in the lower extremities.
Exp Brain Res. 2023 May;241(5):1309-1318. doi: 10.1007/s00221-023-06608-7. Epub 2023 Mar 31.
4
Higher visual gain contributions to bilateral motor synergies and force control.
Sci Rep. 2022 Oct 31;12(1):18271. doi: 10.1038/s41598-022-23274-x.
5
Torque variability of the plantar flexors in people with Huntington's disease.
Am J Transl Res. 2021 Dec 15;13(12):13862-13869. eCollection 2021.
6
Perturbation-induced fast drifts in finger enslaving.
Exp Brain Res. 2021 Mar;239(3):891-902. doi: 10.1007/s00221-020-06027-y. Epub 2021 Jan 9.
7
On the origin of finger enslaving: control with referent coordinates and effects of visual feedback.
J Neurophysiol. 2020 Dec 1;124(6):1625-1636. doi: 10.1152/jn.00322.2020. Epub 2020 Sep 30.
9
Real-time slacking as a default mode of grip force control: implications for force minimization and personal grip force variation.
J Neurophysiol. 2018 Oct 1;120(4):2107-2120. doi: 10.1152/jn.00700.2017. Epub 2018 Aug 8.
10
Improvement in upper-limb UPDRS motor scores following fast-paced arm exercise: A pilot study.
Restor Neurol Neurosci. 2018;36(4):535-545. doi: 10.3233/RNN-180818.

本文引用的文献

1
Characteristics of unintentional movements by a multijoint effector.
J Mot Behav. 2015;47(4):352-61. doi: 10.1080/00222895.2014.986045. Epub 2015 Jan 7.
2
Processes underlying unintentional finger-force changes in the absence of visual feedback.
Exp Brain Res. 2015 Mar;233(3):711-21. doi: 10.1007/s00221-014-4148-x. Epub 2014 Nov 23.
3
Prehension synergies and hand function in early-stage Parkinson's disease.
Exp Brain Res. 2015 Feb;233(2):425-40. doi: 10.1007/s00221-014-4130-7. Epub 2014 Nov 5.
5
Dopaminergic modulation of motor coordinaton in Parkinson's disease.
Parkinsonism Relat Disord. 2014 Jan;20(1):64-8. doi: 10.1016/j.parkreldis.2013.09.019. Epub 2013 Sep 22.
6
Effects of Parkinson's disease on optimization and structure of variance in multi-finger tasks.
Exp Brain Res. 2013 Nov;231(1):51-63. doi: 10.1007/s00221-013-3665-3. Epub 2013 Aug 13.
7
Changes in multifinger interaction and coordination in Parkinson's disease.
J Neurophysiol. 2012 Aug 1;108(3):915-24. doi: 10.1152/jn.00043.2012. Epub 2012 May 2.
8
The bliss (not the problem) of motor abundance (not redundancy).
Exp Brain Res. 2012 Mar;217(1):1-5. doi: 10.1007/s00221-012-3000-4. Epub 2012 Jan 14.
9
Human movement variability, nonlinear dynamics, and pathology: is there a connection?
Hum Mov Sci. 2011 Oct;30(5):869-88. doi: 10.1016/j.humov.2011.06.002. Epub 2011 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验