Suppr超能文献

开花时间的分离有助于同域隐性植物谱系的维持。

Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages.

作者信息

Michalski Stefan G, Durka Walter

机构信息

Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research UFZ Theodor-Lieser-Strasse 4, Halle, D-06120, Germany.

出版信息

Ecol Evol. 2015 Jun;5(11):2172-84. doi: 10.1002/ece3.1481. Epub 2015 May 8.

Abstract

Sympatric cryptic lineages are a challenge for the understanding of species coexistence and lineage diversification as well as for management, conservation, and utilization of plant genetic resources. In higher plants studies providing insights into the mechanisms creating and maintaining sympatric cryptic lineages are rare. Here, using microsatellites and chloroplast sequence data, morphometric analyses, and phenological observations, we ask whether sympatrically coexisting lineages in the common wetland plant Juncus effusus are ecologically differentiated and reproductively isolated. Our results show two genetically highly differentiated, homoploid lineages within J. effusus that are morphologically cryptic and have similar preference for soil moisture content. However, flowering time differed significantly between the lineages contributing to reproductive isolation and the maintenance of these lineages. Furthermore, the later flowering lineage suffered less from predispersal seed predation by a Coleophora moth species. Still, we detected viable and reproducing hybrids between both lineages and the earlier flowering lineage and J. conglomeratus, a coexisting close relative. Flowering time differentiation between the lineages can be explained by neutral divergence alone and together with a lack of postzygotic isolation mechanisms; the sympatric coexistence of these lineages is most likely the result of an allopatric origin with secondary contact.

摘要

同域隐存谱系对于理解物种共存和谱系多样化以及植物遗传资源的管理、保护和利用而言都是一项挑战。在高等植物中,能够深入了解形成和维持同域隐存谱系机制的研究较为罕见。在此,我们利用微卫星和叶绿体序列数据、形态计量分析以及物候观测,探究湿地常见植物灯心草(Juncus effusus)中同域共存的谱系在生态上是否存在分化以及在生殖上是否隔离。我们的研究结果表明,灯心草内存在两个遗传上高度分化的同倍体谱系,它们在形态上难以区分,且对土壤湿度的偏好相似。然而,这两个谱系的开花时间存在显著差异,这有助于生殖隔离以及这些谱系的维持。此外,开花较晚的谱系遭受一种Coleophora蛾类种子传播前捕食的影响较小。尽管如此,我们仍检测到两个谱系之间以及较早开花的谱系与共存的近缘种聚集成丛灯心草(J. conglomeratus)之间存在可育且能繁殖的杂种。谱系之间的开花时间分化仅通过中性分化以及缺乏合子后隔离机制来解释;这些谱系的同域共存很可能是异地起源并伴有二次接触的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6de/4461419/058f211770d4/ece30005-2172-f1.jpg

相似文献

1
Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages.
Ecol Evol. 2015 Jun;5(11):2172-84. doi: 10.1002/ece3.1481. Epub 2015 May 8.
3
Through thick and thin: cryptic sympatric speciation in the submersed genus Najas (Hydrocharitaceae).
Mol Phylogenet Evol. 2015 Jan;82 Pt A:15-30. doi: 10.1016/j.ympev.2014.09.022. Epub 2014 Oct 6.
4
Ghost introgression facilitates genomic divergence of a sympatric cryptic lineage in .
Ecol Evol. 2023 Aug 18;13(8):e10435. doi: 10.1002/ece3.10435. eCollection 2023 Aug.

引用本文的文献

1
Uncovering the Nanozostera japonica species complex suggests cryptic speciation and underestimated seagrass diversity.
New Phytol. 2025 Sep;247(5):2086-2097. doi: 10.1111/nph.70355. Epub 2025 Jun 30.
2
Ghost introgression facilitates genomic divergence of a sympatric cryptic lineage in .
Ecol Evol. 2023 Aug 18;13(8):e10435. doi: 10.1002/ece3.10435. eCollection 2023 Aug.
3
Pollinator sharing between reproductively isolated genetic lineages of .
Front Plant Sci. 2022 Oct 21;13:927498. doi: 10.3389/fpls.2022.927498. eCollection 2022.
4
Genomic divergence in sympatry indicates strong reproductive barriers and cryptic species within .
Ecol Evol. 2021 Mar 29;11(10):5096-5110. doi: 10.1002/ece3.7403. eCollection 2021 May.
6
Trait expression and signatures of adaptation in response to nitrogen addition in the common wetland plant Juncus effusus.
PLoS One. 2019 Jan 4;14(1):e0209886. doi: 10.1371/journal.pone.0209886. eCollection 2019.
7
Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits.
PLoS One. 2018 Apr 4;13(4):e0194670. doi: 10.1371/journal.pone.0194670. eCollection 2018.

本文引用的文献

2
Theoretical models of the influence of genomic architecture on the dynamics of speciation.
Mol Ecol. 2014 Aug;23(16):4074-88. doi: 10.1111/mec.12750. Epub 2014 May 9.
3
Evolution of cryptic gene pools in Hypericum perforatum: the influence of reproductive system and gene flow.
Ann Bot. 2013 Jun;111(6):1083-94. doi: 10.1093/aob/mct065. Epub 2013 Mar 26.
4
Absence of gene flow between diploids and hexaploids of Aster amellus at multiple spatial scales.
Heredity (Edinb). 2013 Feb;110(2):123-30. doi: 10.1038/hdy.2012.87. Epub 2012 Nov 21.
5
The long wait for hybrid sterility in flowering plants.
New Phytol. 2012 Nov;196(3):666-670. doi: 10.1111/j.1469-8137.2012.04309.x. Epub 2012 Sep 12.
6
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update.
Bioinformatics. 2012 Oct 1;28(19):2537-9. doi: 10.1093/bioinformatics/bts460. Epub 2012 Jul 20.
7
8
Identification and characterization of microsatellite loci in the rush Juncus effusus (Juncaceae).
Am J Bot. 2012 Feb;99(2):e53-5. doi: 10.3732/ajb.1100322. Epub 2012 Jan 24.
9
Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae).
Mol Ecol Resour. 2012 Mar;12(2):267-75. doi: 10.1111/j.1755-0998.2011.03095.x. Epub 2011 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验