Suppr超能文献

用于制造基于熔体的固体口服制剂的按需滴注系统:关键工艺参数对产品质量的影响。

Drop-on-Demand System for Manufacturing of Melt-based Solid Oral Dosage: Effect of Critical Process Parameters on Product Quality.

作者信息

Içten Elçin, Giridhar Arun, Nagy Zoltan K, Reklaitis Gintaras V

机构信息

School of Chemical Engineering, Purdue University, Forney Hall of Chemical Engineering, 480 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.

出版信息

AAPS PharmSciTech. 2016 Apr;17(2):284-93. doi: 10.1208/s12249-015-0348-3. Epub 2015 Jun 17.

Abstract

The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.

摘要

先前已报道了为制造熔体基药物而开发的按需滴加系统的特点。本文介绍了一种监督控制系统,其旨在确保高质量熔体基固体口服制剂的可重复生产。该控制系统通过监测和控制关键工艺参数(如液滴大小、产品和工艺温度),能够生产具有所需关键质量属性的单个剂型:活性成分的量和药物形态。研究了这些工艺参数对最终产品质量的影响,并使用拉曼光谱、光学显微镜和溶出度测试等各种技术对所生产剂型的性质进行了表征。提出了一种结晶温度控制策略,包括受控温度循环,以调整药物沉积物的结晶行为并实现一致的药物形态。该控制策略可用于通过减轻溶出曲线的变化来实现药物所需的生物利用度。监督控制策略使按需滴加系统能够应用于个性化药物治疗方案所需的个体化剂型的生产。

相似文献

1
Drop-on-Demand System for Manufacturing of Melt-based Solid Oral Dosage: Effect of Critical Process Parameters on Product Quality.
AAPS PharmSciTech. 2016 Apr;17(2):284-93. doi: 10.1208/s12249-015-0348-3. Epub 2015 Jun 17.
2
Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.
J Pharm Sci. 2015 May;104(5):1641-9. doi: 10.1002/jps.24367. Epub 2015 Jan 30.
3
Applications of process analytical technology to crystallization processes.
Adv Drug Deliv Rev. 2004 Feb 23;56(3):349-69. doi: 10.1016/j.addr.2003.10.012.
4
Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.
J Pharm Sci. 2014 Feb;103(2):496-506. doi: 10.1002/jps.23803. Epub 2013 Dec 5.
5
Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes.
Int J Pharm. 2011 Sep 30;417(1-2):32-47. doi: 10.1016/j.ijpharm.2010.12.012. Epub 2010 Dec 15.
6
In-line ATR-UV and Raman Spectroscopy for Monitoring API Dissolution Process During Liquid-Filled Soft-Gelatin Capsule Manufacturing.
AAPS PharmSciTech. 2016 Oct;17(5):1173-81. doi: 10.1208/s12249-015-0456-0. Epub 2015 Nov 24.
7
Excipient variability and its impact on dosage form functionality.
J Pharm Sci. 2015 Mar;104(3):906-15. doi: 10.1002/jps.24299. Epub 2015 Jan 5.
8
Raman spectroscopy in pharmaceutical product design.
Adv Drug Deliv Rev. 2015 Jul 15;89:3-20. doi: 10.1016/j.addr.2015.04.003. Epub 2015 Apr 11.
9
Characterization of pharmaceutically relevant materials at the solid state employing chemometrics methods.
J Pharm Biomed Anal. 2018 Jan 5;147:538-564. doi: 10.1016/j.jpba.2017.06.017. Epub 2017 Jun 15.
10
Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design.
J Pharm Pharmacol. 2015 Jun;67(6):782-802. doi: 10.1111/jphp.12375. Epub 2015 Feb 10.

引用本文的文献

2
Reimagining drug manufacturing paradigm in today's pharmacy landscape.
J Am Pharm Assoc (2003). 2022 Nov-Dec;62(6):1761-1764. doi: 10.1016/j.japh.2022.08.024. Epub 2022 Aug 30.
4
Printable nanocomposites of polymers and silver nanoparticles for antibacterial devices produced by DoD technology.
PLoS One. 2018 Jul 19;13(7):e0200918. doi: 10.1371/journal.pone.0200918. eCollection 2018.

本文引用的文献

1
Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.
J Pharm Sci. 2015 May;104(5):1641-9. doi: 10.1002/jps.24367. Epub 2015 Jan 30.
2
Personalised dosing: Printing a dose of one's own medicine.
Int J Pharm. 2015 Oct 30;494(2):568-577. doi: 10.1016/j.ijpharm.2014.12.006. Epub 2014 Dec 10.
3
Understanding pharmaceutical quality by design.
AAPS J. 2014 Jul;16(4):771-83. doi: 10.1208/s12248-014-9598-3. Epub 2014 May 23.
4
Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.
J Pharm Sci. 2014 Feb;103(2):496-506. doi: 10.1002/jps.23803. Epub 2013 Dec 5.
5
Printing technologies in fabrication of drug delivery systems.
Expert Opin Drug Deliv. 2013 Dec;10(12):1711-23. doi: 10.1517/17425247.2013.859134.
6
Crystallization and dissolution behavior of naproxen/polyethylene glycol solid dispersions.
J Phys Chem B. 2013 Feb 7;117(5):1494-500. doi: 10.1021/jp3106716. Epub 2013 Jan 25.
7
Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique.
J Pharm Sci. 2013 Feb;102(2):638-48. doi: 10.1002/jps.23397. Epub 2012 Dec 5.
8
9
Advances and new directions in crystallization control.
Annu Rev Chem Biomol Eng. 2012;3:55-75. doi: 10.1146/annurev-chembioeng-062011-081043. Epub 2012 Mar 8.
10
Inkjet printing of drug substances and use of porous substrates-towards individualized dosing.
J Pharm Sci. 2011 Aug;100(8):3386-3395. doi: 10.1002/jps.22526. Epub 2011 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验