Suppr超能文献

为药物逐滴添加剂制造打印机开发一个启用机器学习的集成配方和工艺设计框架。

Developing a machine learning enabled integrated formulation and process design framework for a pharmaceutical dropwise additive manufacturing printer.

作者信息

Sundarkumar Varun, Nagy Zoltan K, Reklaitis Gintaras V

机构信息

Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, USA.

出版信息

AIChE J. 2023 Apr 1;69(4). doi: 10.1002/aic.17990. Epub 2022 Nov 13.

Abstract

The pharmaceutical manufacturing sector needs to rapidly evolve to absorb the next wave of disruptive industrial innovations - Industry 4.0. This involves incorporating technologies like artificial intelligence, smart factories and 3D printing to automate, miniaturize and personalize the production processes. The goal of this study is to build a formulation and process design (FPD) framework for a pharmaceutical 3D printing technique called drop-on-demand (DoD) printing. FPD can automate the determination of formulation properties and printing conditions (input conditions) for DoD operation that can guarantee production of drug products with desired functional attributes. This study proposes to build the FPD framework in two parts: the first part involves building a machine learning model to simulate the forward problem - predicting DoD operation based on input conditions and the second part seeks to solve and experimentally validate the inverse problem - predicting input conditions that can yield desired DoD operation.

摘要

制药制造业需要迅速发展,以接纳下一波颠覆性产业创新——工业4.0。这涉及整合人工智能、智能工厂和3D打印等技术,以实现生产流程的自动化、小型化和个性化。本研究的目标是为一种名为按需滴注(DoD)打印的制药3D打印技术构建一个配方和工艺设计(FPD)框架。FPD可以自动确定DoD操作的配方特性和打印条件(输入条件),从而确保生产出具有所需功能属性的药品。本研究建议分两部分构建FPD框架:第一部分涉及构建一个机器学习模型,以模拟正向问题——基于输入条件预测DoD操作;第二部分旨在解决并通过实验验证反向问题——预测能够产生所需DoD操作的输入条件。

相似文献

5
3D bioprinted microparticles: Optimizing loading efficiency using advanced DoE technique and machine learning modeling.
Int J Pharm. 2022 Nov 25;628:122302. doi: 10.1016/j.ijpharm.2022.122302. Epub 2022 Oct 17.
6
M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines.
Int J Pharm. 2020 Nov 30;590:119837. doi: 10.1016/j.ijpharm.2020.119837. Epub 2020 Sep 20.
7
Machine learning predicts 3D printing performance of over 900 drug delivery systems.
J Control Release. 2021 Sep 10;337:530-545. doi: 10.1016/j.jconrel.2021.07.046. Epub 2021 Jul 30.
8
Therapy for the individual: Towards patient integration into the manufacturing and provision of pharmaceuticals.
Eur J Pharm Biopharm. 2020 Apr;149:58-76. doi: 10.1016/j.ejpb.2020.01.001. Epub 2020 Jan 23.
9
Harnessing artificial intelligence for the next generation of 3D printed medicines.
Adv Drug Deliv Rev. 2021 Aug;175:113805. doi: 10.1016/j.addr.2021.05.015. Epub 2021 May 18.
10
Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.
J Pharm Sci. 2015 May;104(5):1641-9. doi: 10.1002/jps.24367. Epub 2015 Jan 30.

引用本文的文献

1
Let's Print an Ecology in 3D (and 4D).
Materials (Basel). 2024 May 7;17(10):2194. doi: 10.3390/ma17102194.
2
Manufacturing pharmaceutical mini-tablets for pediatric patients using drop-on-demand printing.
Int J Pharm. 2023 Sep 25;644:123355. doi: 10.1016/j.ijpharm.2023.123355. Epub 2023 Aug 28.

本文引用的文献

2
Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future.
Int J Pharm. 2021 Jun 1;602:120554. doi: 10.1016/j.ijpharm.2021.120554. Epub 2021 Mar 29.
3
M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines.
Int J Pharm. 2020 Nov 30;590:119837. doi: 10.1016/j.ijpharm.2020.119837. Epub 2020 Sep 20.
4
3D printing tablets: Predicting printability and drug dissolution from rheological data.
Int J Pharm. 2020 Nov 30;590:119868. doi: 10.1016/j.ijpharm.2020.119868. Epub 2020 Sep 17.
5
Dropwise Additive Manufacturing of Pharmaceutical Products Using Particle Suspensions.
J Pharm Sci. 2019 Feb;108(2):914-928. doi: 10.1016/j.xphs.2018.09.030. Epub 2018 Oct 9.
6
Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.
Chemistry. 2018 Feb 21;24(11):2776-2784. doi: 10.1002/chem.201706004. Epub 2018 Jan 31.
7
Roadmap for a Smart Factory: A Modular, Intelligent Concept for the Production of Specialty Chemicals.
Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4242-4247. doi: 10.1002/anie.201711571. Epub 2018 Mar 5.
9
The future of pharmaceutical quality and the path to get there.
Int J Pharm. 2017 Aug 7;528(1-2):354-359. doi: 10.1016/j.ijpharm.2017.06.039. Epub 2017 Jun 12.
10
On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system.
Science. 2016 Apr 1;352(6281):61-7. doi: 10.1126/science.aaf1337.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验