Sundarkumar Varun, Nagy Zoltan K, Reklaitis Gintaras V
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
AIChE J. 2023 Apr 1;69(4). doi: 10.1002/aic.17990. Epub 2022 Nov 13.
The pharmaceutical manufacturing sector needs to rapidly evolve to absorb the next wave of disruptive industrial innovations - Industry 4.0. This involves incorporating technologies like artificial intelligence, smart factories and 3D printing to automate, miniaturize and personalize the production processes. The goal of this study is to build a formulation and process design (FPD) framework for a pharmaceutical 3D printing technique called drop-on-demand (DoD) printing. FPD can automate the determination of formulation properties and printing conditions (input conditions) for DoD operation that can guarantee production of drug products with desired functional attributes. This study proposes to build the FPD framework in two parts: the first part involves building a machine learning model to simulate the forward problem - predicting DoD operation based on input conditions and the second part seeks to solve and experimentally validate the inverse problem - predicting input conditions that can yield desired DoD operation.
制药制造业需要迅速发展,以接纳下一波颠覆性产业创新——工业4.0。这涉及整合人工智能、智能工厂和3D打印等技术,以实现生产流程的自动化、小型化和个性化。本研究的目标是为一种名为按需滴注(DoD)打印的制药3D打印技术构建一个配方和工艺设计(FPD)框架。FPD可以自动确定DoD操作的配方特性和打印条件(输入条件),从而确保生产出具有所需功能属性的药品。本研究建议分两部分构建FPD框架:第一部分涉及构建一个机器学习模型,以模拟正向问题——基于输入条件预测DoD操作;第二部分旨在解决并通过实验验证反向问题——预测能够产生所需DoD操作的输入条件。