Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Nano Lett. 2015 Jul 8;15(7):4745-51. doi: 10.1021/acs.nanolett.5b01664. Epub 2015 Jun 18.
We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management.
我们开发了一种具有高度取向石墨片的纳米复合材料,其基体为铜。火花等离子烧结确保了优异的铜-石墨界面,以传递热和应力。所得复合材料具有优异的导热系数(500 W m(-1) K(-1),比铜高 140%),这与基于有效介质近似的建模结果非常吻合。垂直于石墨片的热膨胀率从石墨和铜的单独值约 20 ppm K(-1)急剧下降到组合结构的 2 ppm K(-1)。我们表明,这源于石墨的层状、各向异性结构以及在环境条件下的残余应力,即热膨胀的应变工程。将优异的导热性与超低的热膨胀率相结合,为散热器和其他热管理器件提供了理想的材料。