Suppr超能文献

灵长类动物额叶皮质神经元在自然发声交流中的反应。

Responses of primate frontal cortex neurons during natural vocal communication.

作者信息

Miller Cory T, Thomas A Wren, Nummela Samuel U, de la Mothe Lisa A

机构信息

Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California;

Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Helen Wills Neuroscience Graduate Program, University of California, Berkeley, Berkeley, California; and.

出版信息

J Neurophysiol. 2015 Aug;114(2):1158-71. doi: 10.1152/jn.01003.2014. Epub 2015 Jun 17.

Abstract

The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.

摘要

灵长类动物额叶皮质在发声交流中的作用及其在语言进化中的意义一直存在争议。虽然有证据表明发声处理发生在腹外侧前额叶皮质神经元中,但发声运动活动一直被推测主要位于皮质下,这表明其神经结构与人类明显不同。由于之前的研究是在固定在椅子上的动物身上进行的,因此自然发声交流过程中神经活动的直接证据有限。在这里,我们记录了自由活动的狨猴在进行一种被称为对唱的自然发声行为时,前额叶和运动前皮质多个区域单个神经元的活动。我们的目的是测试狨猴额叶皮质中的神经元在积极的自然交流背景下,在发声信号处理和/或发声运动产生过程中是否表现出反应。我们观察到发声过程中单个神经元活动的运动相关变化,但在这种自然行为中,发声处理的感觉反应相对较弱。发声运动反应在叫声产生之前和期间都会出现,并且通常与每个发声脉冲的时间相关联。尽管感觉反应相对较弱,但群体分类器能够区分在引发对唱反应的发声刺激呈现期间发生的神经活动和未引发对唱反应的发声刺激呈现期间发生的神经活动。这些发现表明了非人类灵长类动物额叶皮质神经元在自然交流中的作用,并为更明确地测试这些新皮质区域在发声行为中的功能贡献提供了重要基础。

相似文献

1
Responses of primate frontal cortex neurons during natural vocal communication.
J Neurophysiol. 2015 Aug;114(2):1158-71. doi: 10.1152/jn.01003.2014. Epub 2015 Jun 17.
3
Social Context-Dependent Activity in Marmoset Frontal Cortex Populations during Natural Conversations.
J Neurosci. 2017 Jul 19;37(29):7036-7047. doi: 10.1523/JNEUROSCI.0702-17.2017. Epub 2017 Jun 19.
4
Sensory-motor interactions modulate a primate vocal behavior: antiphonal calling in common marmosets.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jan;192(1):27-38. doi: 10.1007/s00359-005-0043-z. Epub 2005 Aug 31.
5
Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.
Hear Res. 2018 Sep;366:82-89. doi: 10.1016/j.heares.2018.03.019. Epub 2018 Mar 20.
6
Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex.
Hear Res. 2017 May;348:98-111. doi: 10.1016/j.heares.2017.03.001. Epub 2017 Mar 9.
7
Vocalization Induced CFos Expression in Marmoset Cortex.
Front Integr Neurosci. 2010 Dec 14;4:128. doi: 10.3389/fnint.2010.00128. eCollection 2010.
8
Antiphonal call timing in marmosets is behaviorally significant: interactive playback experiments.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Aug;195(8):783-9. doi: 10.1007/s00359-009-0456-1. Epub 2009 Jul 12.
9
Dissociation of Unit Activity and Gamma Oscillations during Vocalization in Primate Auditory Cortex.
J Neurosci. 2020 May 20;40(21):4158-4171. doi: 10.1523/JNEUROSCI.2749-19.2020. Epub 2020 Apr 15.
10
Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations.
J Neurophysiol. 2003 Apr;89(4):2194-207. doi: 10.1152/jn.00627.2002. Epub 2002 Dec 11.

引用本文的文献

1
High-resolution fMRI reveals a dorsal brain pathway selective for conspecific vocalizations in macaques.
Imaging Neurosci (Camb). 2025 Aug 13;3. doi: 10.1162/IMAG.a.108. eCollection 2025.
2
Evolutionary Convergence of the Arcuate Fasciculus in Marmosets and Humans.
bioRxiv. 2025 Jun 17:2025.04.21.649746. doi: 10.1101/2025.04.21.649746.
4
Neural activity for complex sounds in the marmoset anterior cingulate cortex.
Commun Biol. 2024 Oct 11;7(1):1310. doi: 10.1038/s42003-024-07019-2.
5
Representing the dynamics of natural marmoset vocal behaviors in frontal cortex.
Neuron. 2024 Nov 6;112(21):3542-3550.e3. doi: 10.1016/j.neuron.2024.08.020. Epub 2024 Sep 23.
6
Frontal-Auditory Cortical Interactions and Sensory Prediction During Vocal Production in Marmoset Monkeys.
bioRxiv. 2024 Jan 29:2024.01.28.577656. doi: 10.1101/2024.01.28.577656.
7
Temporal scaling of motor cortical dynamics reveals hierarchical control of vocal production.
Nat Neurosci. 2024 Mar;27(3):527-535. doi: 10.1038/s41593-023-01556-5. Epub 2024 Jan 30.
8
Pre-saccadic Neural Enhancements in Marmoset Area MT.
J Neurosci. 2024 Jan 24;44(4):e2034222023. doi: 10.1523/JNEUROSCI.2034-22.2023.
10
The neurobiology of vocal communication in marmosets.
Ann N Y Acad Sci. 2023 Oct;1528(1):13-28. doi: 10.1111/nyas.15057. Epub 2023 Aug 24.

本文引用的文献

1
Vocal turn-taking in a non-human primate is learned during ontogeny.
Proc Biol Sci. 2015 May 22;282(1807):20150069. doi: 10.1098/rspb.2015.0069.
2
Context-dependent computation by recurrent dynamics in prefrontal cortex.
Nature. 2013 Nov 7;503(7474):78-84. doi: 10.1038/nature12742.
3
Coupled oscillator dynamics of vocal turn-taking in monkeys.
Curr Biol. 2013 Nov 4;23(21):2162-8. doi: 10.1016/j.cub.2013.09.005. Epub 2013 Oct 17.
4
A conserved pattern of differential expansion of cortical areas in simian primates.
J Neurosci. 2013 Sep 18;33(38):15120-5. doi: 10.1523/JNEUROSCI.2909-13.2013.
5
Receiver psychology turns 20: is it time for a broader approach?
Anim Behav. 2012 Feb 1;83(2):331-343. doi: 10.1016/j.anbehav.2011.11.025.
7
Motor planning for vocal production in common marmosets.
Anim Behav. 2009 Nov;78(5):1195-1203. doi: 10.1016/j.anbehav.2009.07.038.
8
Coding of vocalizations by single neurons in ventrolateral prefrontal cortex.
Hear Res. 2013 Nov;305:135-43. doi: 10.1016/j.heares.2013.07.011. Epub 2013 Jul 26.
9
The importance of mixed selectivity in complex cognitive tasks.
Nature. 2013 May 30;497(7451):585-90. doi: 10.1038/nature12160. Epub 2013 May 19.
10
The effect of habitat acoustics on common marmoset vocal signal transmission.
Am J Primatol. 2013 Sep;75(9):904-16. doi: 10.1002/ajp.22152. Epub 2013 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验