Suppr超能文献

叶片解剖结构如何影响木质部外的水分运输?

How Does Leaf Anatomy Influence Water Transport outside the Xylem?

作者信息

Buckley Thomas N, John Grace P, Scoffoni Christine, Sack Lawren

机构信息

I.A. Watson Grains Research Centre, Faculty of Agriculture and Environment, University of Sydney, Narrabri, New South Wales 2390, Australia (T.N.B.); andDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095 (G.P.J., C.S., L.S.)

I.A. Watson Grains Research Centre, Faculty of Agriculture and Environment, University of Sydney, Narrabri, New South Wales 2390, Australia (T.N.B.); andDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095 (G.P.J., C.S., L.S.).

出版信息

Plant Physiol. 2015 Aug;168(4):1616-35. doi: 10.1104/pp.15.00731. Epub 2015 Jun 17.

Abstract

Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function.

摘要

叶片可以说是生态圈中最复杂且最重要的物理生物学系统。然而,尽管叶片木质部外的水分运输对气孔功能和光合作用有影响,但其仍未得到充分理解。我们将来自14种不同物种的解剖学测量数据应用于一种新的叶小区域(由小叶脉界定的最小区域)水流模型,以预测物种间解剖学差异对木质部外水力传导率(Kox)的影响。一些预测验证了先前的相关性研究:(1)单位面积的叶脉长度是Kox最强的解剖学决定因素,这是由于其对水力路径长度和维管束鞘(BS)表面积的影响;(2)在气孔在下表面的物种中,栅栏叶肉保持良好的水分状态,这可能有利于光合作用;(3)BS延伸增强Kox;(4)尽管上表皮和下表皮距离很近,但它们在水力上是相互隔离的。我们的研究结果还提供了新的见解:(5)BS对木质部外阻力的贡献较小;(6)蒸汽运输对Kox的贡献高达三分之二;(7)叶脉靠近下表皮会强烈增强Kox;(8)Kox受海绵叶肉解剖结构的强烈影响,随原生质体大小减小而减小,随气腔分数和细胞壁厚度增加而增加。物种间解剖结构与Kox之间的相关性有时与预测的因果效应不同,这表明需要综合模型来解决因果关系。例如,(9)异气压物种中的Kox增强幅度远大于根据其具有BS延伸所预测的幅度。我们的方法为解剖学变异在叶片功能中的作用提供了详细的见解。

相似文献

1
How Does Leaf Anatomy Influence Water Transport outside the Xylem?
Plant Physiol. 2015 Aug;168(4):1616-35. doi: 10.1104/pp.15.00731. Epub 2015 Jun 17.
2
The Sites of Evaporation within Leaves.
Plant Physiol. 2017 Mar;173(3):1763-1782. doi: 10.1104/pp.16.01605. Epub 2017 Feb 2.
3
Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
Plant Cell Environ. 2018 Feb;41(2):342-353. doi: 10.1111/pce.13087. Epub 2017 Nov 24.
4
Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy.
Plant Cell Environ. 2019 Jul;42(7):2231-2244. doi: 10.1111/pce.13553. Epub 2019 May 14.
5
Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO in Oryza.
New Phytol. 2017 Jan;213(2):572-583. doi: 10.1111/nph.14186. Epub 2016 Sep 22.
7
Anatomical changes with needle length are correlated with leaf structural and physiological traits across five Pinus species.
Plant Cell Environ. 2019 May;42(5):1690-1704. doi: 10.1111/pce.13516. Epub 2019 Feb 11.
8
The competition between liquid and vapor transport in transpiring leaves.
Plant Physiol. 2014 Apr;164(4):1741-58. doi: 10.1104/pp.114.236323. Epub 2014 Feb 26.

引用本文的文献

8
Localized measurements of water potential reveal large loss of conductance in living tissues of maize leaves.
Plant Physiol. 2024 Mar 29;194(4):2288-2300. doi: 10.1093/plphys/kiad679.
10
Integrating stay-green and PIN-FORMED genes: PIN-FORMED genes as potential targets for designing climate-resilient cereal ideotypes.
AoB Plants. 2023 Jul 6;15(4):plad040. doi: 10.1093/aobpla/plad040. eCollection 2023 Jul.

本文引用的文献

1
Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species.
Funct Plant Biol. 2005 Oct;32(10):953-961. doi: 10.1071/FP05100.
4
Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042704. doi: 10.1103/PhysRevE.90.042704. Epub 2014 Oct 8.
7
Are leaves 'freewheelin'? Testing for a wheeler-type effect in leaf xylem hydraulic decline.
Plant Cell Environ. 2015 Mar;38(3):534-43. doi: 10.1111/pce.12413. Epub 2014 Sep 26.
8
The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves.
Plant Cell Environ. 2015 Jan;38(1):7-22. doi: 10.1111/pce.12372. Epub 2014 Jun 16.
9
Bundle sheath suberization in grass leaves: multiple barriers to characterization.
J Exp Bot. 2014 Jul;65(13):3371-80. doi: 10.1093/jxb/eru108. Epub 2014 Mar 22.
10
The competition between liquid and vapor transport in transpiring leaves.
Plant Physiol. 2014 Apr;164(4):1741-58. doi: 10.1104/pp.114.236323. Epub 2014 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验