Suppr超能文献

特定异源二聚体组成的 PIP 水通道蛋白在组织特异性积累是玉米响应菌根和干旱的一部分。

Tissue-specific accumulation of PIP aquaporins of a particular heteromeric composition is part of the maize response to mycorrhiza and drought.

机构信息

Department of Plant Physiology, Adam Mickiewicz University, Poznan, Poland.

出版信息

Sci Rep. 2024 Sep 17;14(1):21712. doi: 10.1038/s41598-024-72828-8.

Abstract

The systemic coordination of accumulation of plasma membrane aquaporins (PIP) was investigated in this study in relation to mycorrhized maize response to a rapid development of severe drought followed by rewatering. In non-mycorrhizal roots, drought led to a drop in PIP abundance, followed by a transient increase under rewatering, whereas leaves showed an opposite pattern. In contrast, mycorrhiza contributed to maintenance of high and stable levels of PIPs in both plant organs after an initial increase, prolonged over the irrigation period. Isoelectric focusing electrophoresis resolved up to 13 aquaporin complexes with highly reproducible pl positions across leaf and root samples, symbiotic and non-symbiotic, stressed or not. Mass spectrometry recognized in leaves and roots a different ratio of PIP1 and PIP2 subunits within 2D spots that accumulated the most. Regardless of symbiotic status, drought regulation of aquaporins in roots was manifested as the prevalence of complexes that comprise almost exclusively PIP2 monomers. In contrast, the leaf response involved enrichment in PIP1s. PIP1s are thought to enhance water transport, facilitate CO diffusion but also affect stomatal movements. These features, together with elevated aquaporin levels, might explain a stress tolerance mechanism observed in mycorrhizal plants, resulting in faster recovery of stomatal water conductance and CO assimilation rate after drought.

摘要

本研究调查了质膜水通道蛋白(PIP)的系统协调积累与受菌根玉米对快速发展的严重干旱及随后复水的响应之间的关系。在非菌根根中,干旱导致 PIP 丰度下降,随后在复水时短暂增加,而叶片则呈现相反的模式。相比之下,在最初增加后,菌根有助于在灌溉期内维持植物器官中 PIPs 的高且稳定水平。等电聚焦电泳在叶和根样本、共生和非共生、胁迫和非胁迫中,解析出多达 13 种具有高度重现 pl 位置的水通道蛋白复合物。质谱在叶片和根中识别出在积累最多的 2D 斑点中,PIP1 和 PIP2 亚基的比例不同。无论共生状态如何,根中对水通道蛋白的干旱调控表现为几乎仅由 PIP2 单体组成的复合物占优势。相比之下,叶片的响应涉及 PIP1s 的富集。人们认为 PIP1s 可以增强水的运输,促进 CO2 的扩散,但也会影响气孔运动。这些特征,加上水通道蛋白水平的升高,可能解释了菌根植物中观察到的一种胁迫耐受机制,导致气孔水导和 CO2 同化率在干旱后更快恢复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验