Chang Hao-Yen, Liao Chia-Yu, Su Guan-Chin, Lin Sheng-Wei, Wang Hong-Wei, Chi Peter
From the Institute of Biochemical Sciences, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617 Taiwan.
the Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan, and.
J Biol Chem. 2015 Aug 7;290(32):19863-73. doi: 10.1074/jbc.M115.666289. Epub 2015 Jun 18.
DMC1 and RAD51 are conserved recombinases that catalyze homologous recombination. DMC1 and RAD51 share similar properties in DNA binding, DNA-stimulated ATP hydrolysis, and catalysis of homologous DNA strand exchange. A large body of evidence indicates that attenuation of ATP hydrolysis leads to stabilization of the RAD51-ssDNA presynaptic filament and enhancement of DNA strand exchange. However, the functional relationship of ATPase activity, presynaptic filament stability, and DMC1-mediated homologous DNA strand exchange has remained largely unexplored. To address this important question, we have constructed several mutant variants of human DMC1 and characterized them biochemically to gain mechanistic insights. Two mutations, K132R and D223N, that change key residues in the Walker A and B nucleotide-binding motifs ablate ATP binding and render DMC1 inactive. On the other hand, the nucleotide-binding cap D317K mutant binds ATP normally but shows significantly attenuated ATPase activity and, accordingly, forms a highly stable presynaptic filament. Surprisingly, unlike RAD51, presynaptic filament stabilization achieved via ATP hydrolysis attenuation does not lead to any enhancement of DMC1-catalyzed homologous DNA pairing and strand exchange. This conclusion is further supported by examining wild-type DMC1 with non-hydrolyzable ATP analogues. Thus, our results reveal an important mechanistic difference between RAD51 and DMC1.
DMC1和RAD51是保守的重组酶,可催化同源重组。DMC1和RAD51在DNA结合、DNA刺激的ATP水解以及同源DNA链交换的催化方面具有相似的特性。大量证据表明,ATP水解的减弱会导致RAD51-ssDNA突触前细丝的稳定,并增强DNA链交换。然而,ATP酶活性、突触前细丝稳定性和DMC1介导的同源DNA链交换之间的功能关系在很大程度上仍未得到探索。为了解决这个重要问题,我们构建了几种人类DMC1的突变变体,并对其进行了生化表征,以获得机制上的见解。两个突变,K132R和D223N,它们改变了沃克A和B核苷酸结合基序中的关键残基,消除了ATP结合并使DMC1失活。另一方面,核苷酸结合帽D317K突变体正常结合ATP,但显示出明显减弱的ATP酶活性,因此形成了高度稳定的突触前细丝。令人惊讶的是,与RAD51不同,通过减弱ATP水解实现的突触前细丝稳定不会导致DMC1催化的同源DNA配对和链交换的任何增强。通过用不可水解的ATP类似物检测野生型DMC1,这一结论得到了进一步支持。因此,我们的结果揭示了RAD51和DMC1之间重要的机制差异。