Suppr超能文献

间充质干细胞衰老:机制及其对骨骼和非骨骼组织的影响

Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues.

作者信息

Liu Huijuan, Xia Xuechun, Li Baojie

机构信息

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

出版信息

Exp Biol Med (Maywood). 2015 Aug;240(8):1099-106. doi: 10.1177/1535370215591828. Epub 2015 Jun 18.

Abstract

The aging population and the incidence of aging-related diseases such as osteoporosis are on the rise. Aging at the tissue and organ levels usually involves tissue stem cells. Human and animal model studies indicate that aging affects two aspects of mesenchymal stem cell (MSC): a decrease in the bone marrow MSC pool and biased differentiation into adipocyte at the cost of osteoblast, which underlie the etiology of osteoporosis. Aging of MSC cells is also detrimental to some non-skeletal tissues, in particular the hematopoietic system, where MSCs serve as a niche component. In addition, aging compromises the therapeutic potentials of MSC cells, including cells isolated from aged individuals or cells cultured for many passages. Here we discuss the recent progress on our understanding of MSC aging, with a focus on the effects of MSC aging on bone remodeling and hematopoiesis and the mechanisms of MSC aging.

摘要

老龄化人口以及诸如骨质疏松症等与衰老相关疾病的发病率正在上升。组织和器官层面的衰老通常涉及组织干细胞。人类和动物模型研究表明,衰老影响间充质干细胞(MSC)的两个方面:骨髓MSC库减少,且以成骨细胞为代价偏向分化为脂肪细胞,这是骨质疏松症病因的基础。MSC细胞的衰老对一些非骨骼组织也有害,尤其是造血系统,其中MSC作为一种微环境成分。此外,衰老会损害MSC细胞的治疗潜力,包括从老年个体分离的细胞或传代培养许多次的细胞。在这里,我们讨论了我们对MSC衰老理解的最新进展,重点是MSC衰老对骨重塑和造血的影响以及MSC衰老的机制。

相似文献

1
Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues.
Exp Biol Med (Maywood). 2015 Aug;240(8):1099-106. doi: 10.1177/1535370215591828. Epub 2015 Jun 18.
2
β3-Adrenergic Regulation of EPC Features Through Manipulation of the Bone Marrow MSC Niche.
J Cell Biochem. 2017 Dec;118(12):4753-4761. doi: 10.1002/jcb.26143. Epub 2017 Jun 12.
5
IP6K1 Reduces Mesenchymal Stem/Stromal Cell Fitness and Potentiates High Fat Diet-Induced Skeletal Involution.
Stem Cells. 2017 Aug;35(8):1973-1983. doi: 10.1002/stem.2645. Epub 2017 Jun 15.
6
FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging.
J Clin Invest. 2017 Apr 3;127(4):1241-1253. doi: 10.1172/JCI89511. Epub 2017 Feb 27.
7
Systemic impact molds mesenchymal stromal/stem cell aging.
Transfus Apher Sci. 2015 Jun;52(3):285-9. doi: 10.1016/j.transci.2015.04.008. Epub 2015 Apr 8.
8
Mesenchymal cell contributions to the stem cell niche.
Cell Stem Cell. 2015 Mar 5;16(3):239-53. doi: 10.1016/j.stem.2015.02.019.
9
Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells.
PLoS One. 2014 Dec 26;9(12):e115963. doi: 10.1371/journal.pone.0115963. eCollection 2014.
10
Metabolic Coupling Between Bone Marrow Adipose Tissue and Hematopoiesis.
Curr Osteoporos Rep. 2018 Apr;16(2):95-104. doi: 10.1007/s11914-018-0422-3.

引用本文的文献

1
The Role of Injectable Platelet-Rich Fibrin in Orthopedics: Where Do We Stand?
Curr Issues Mol Biol. 2025 Mar 29;47(4):239. doi: 10.3390/cimb47040239.
3
The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.
Regen Ther. 2024 Dec 25;28:214-226. doi: 10.1016/j.reth.2024.11.017. eCollection 2025 Mar.
4
Personalized bone organoid using iPSC-derived cells for clinically relevant applications.
Res Sq. 2024 Dec 13:rs.3.rs-5349885. doi: 10.21203/rs.3.rs-5349885/v1.
7
Advancing immunomodulatory functions in mesenchymal stem/stromal cells through targeting the GATA6-mediated pathway.
Cytotherapy. 2025 Jan;27(1):85-97. doi: 10.1016/j.jcyt.2024.08.001. Epub 2024 Aug 8.
8
miR-203-3p promotes senescence of mouse bone marrow mesenchymal stem cells via downregulation of Pbk.
Aging Cell. 2024 Nov;23(11):e14293. doi: 10.1111/acel.14293. Epub 2024 Aug 9.

本文引用的文献

1
Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma.
Gene. 2015 Feb 25;557(2):209-14. doi: 10.1016/j.gene.2014.12.039. Epub 2014 Dec 20.
2
SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.
Stem Cells Dev. 2015 May 1;24(9):1073-81. doi: 10.1089/scd.2014.0501. Epub 2015 Feb 5.
4
CHK2 kinase in the DNA damage response and beyond.
J Mol Cell Biol. 2014 Dec;6(6):442-57. doi: 10.1093/jmcb/mju045. Epub 2014 Nov 17.
5
Obesity-driven disruption of haematopoiesis and the bone marrow niche.
Nat Rev Endocrinol. 2014 Dec;10(12):737-48. doi: 10.1038/nrendo.2014.169. Epub 2014 Oct 14.
6
CKIP-1 suppresses the adipogenesis of mesenchymal stem cells by enhancing HDAC1-associated repression of C/EBPα.
J Mol Cell Biol. 2014 Oct;6(5):368-79. doi: 10.1093/jmcb/mju034. Epub 2014 Sep 19.
7
The p53/miR-34 axis in development and disease.
J Mol Cell Biol. 2014 Jun;6(3):214-30. doi: 10.1093/jmcb/mju003. Epub 2014 May 9.
8
Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.
Science. 2014 May 9;344(6184):649-52. doi: 10.1126/science.1251152. Epub 2014 May 5.
9
Telomerase protects werner syndrome lineage-specific stem cells from premature aging.
Stem Cell Reports. 2014 Mar 27;2(4):534-46. doi: 10.1016/j.stemcr.2014.02.006. eCollection 2014 Apr 8.
10
Bone marrow fat.
Joint Bone Spine. 2014 Jul;81(4):313-9. doi: 10.1016/j.jbspin.2014.02.013. Epub 2014 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验