Hallen Mark A, Gainza Pablo, Donald Bruce R
J Chem Theory Comput. 2015 May 12;11(5):2292-306. doi: 10.1021/ct501031m.
In macromolecular design, conformational energies are sensitive to small changes in atom coordinates; thus, modeling the small, continuous motions of atoms around low-energy wells confers a substantial advantage in structural accuracy. However, modeling these motions comes at the cost of a very large number of energy function calls, which form the bottleneck in the design calculations. In this work, we remove this bottleneck by consolidating all conformational energy evaluations into the pre-computation of a local polynomial expansion of the energy about the "ideal" conformation for each low-energy, "rotameric" state of each residue pair. This expansion is called "energy as polynomials in internal coordinates" (EPIC), where the internal coordinates can be side-chain dihedrals, backrub angles, and/or any other continuous degrees of freedom of a macromolecule, and any energy function can be used without adding any asymptotic complexity to the design. We demonstrate that EPIC efficiently represents the energy surface for both molecular-mechanics and quantum-mechanical energy functions, and apply it specifically to protein design for modeling both side chain and backbone degrees of freedom.
在大分子设计中,构象能量对原子坐标的微小变化很敏感;因此,对围绕低能阱的原子的微小连续运动进行建模,在结构准确性方面具有显著优势。然而,对这些运动进行建模的代价是需要进行大量的能量函数调用,这构成了设计计算中的瓶颈。在这项工作中,我们通过将所有构象能量评估合并到每个残基对的每个低能“旋转异构体”状态关于“理想”构象的能量的局部多项式展开的预计算中,消除了这个瓶颈。这种展开被称为“内部坐标中的多项式能量”(EPIC),其中内部坐标可以是侧链二面角、后向旋转角和/或大分子的任何其他连续自由度,并且可以使用任何能量函数而不会给设计增加任何渐近复杂性。我们证明,EPIC能够有效地表示分子力学和量子力学能量函数的能量表面,并将其具体应用于蛋白质设计,以对侧链和主链自由度进行建模。