Suppr超能文献

基于稀疏残基相互作用图的计算蛋白质设计的批判性分析

A critical analysis of computational protein design with sparse residue interaction graphs.

作者信息

Jain Swati, Jou Jonathan D, Georgiev Ivelin S, Donald Bruce R

机构信息

Computational Biology and Bioinformatics Program, Duke University, Durham, North Carolina, United States of America.

Department of Computer Science, Duke University, Durham, North Carolina, United States of America.

出版信息

PLoS Comput Biol. 2017 Mar 30;13(3):e1005346. doi: 10.1371/journal.pcbi.1005346. eCollection 2017 Mar.

Abstract

Protein design algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC). To efficiently find the GMEC, protein design algorithms must methodically reduce the conformational search space. By applying distance and energy cutoffs, the protein system to be designed can thus be represented using a sparse residue interaction graph, where the number of interacting residue pairs is less than all pairs of mutable residues, and the corresponding GMEC is called the sparse GMEC. However, ignoring some pairwise residue interactions can lead to a change in the energy, conformation, or sequence of the sparse GMEC vs. the original or the full GMEC. Despite the widespread use of sparse residue interaction graphs in protein design, the above mentioned effects of their use have not been previously analyzed. To analyze the costs and benefits of designing with sparse residue interaction graphs, we computed the GMECs for 136 different protein design problems both with and without distance and energy cutoffs, and compared their energies, conformations, and sequences. Our analysis shows that the differences between the GMECs depend critically on whether or not the design includes core, boundary, or surface residues. Moreover, neglecting long-range interactions can alter local interactions and introduce large sequence differences, both of which can result in significant structural and functional changes. Designs on proteins with experimentally measured thermostability show it is beneficial to compute both the full and the sparse GMEC accurately and efficiently. To this end, we show that a provable, ensemble-based algorithm can efficiently compute both GMECs by enumerating a small number of conformations, usually fewer than 1000. This provides a novel way to combine sparse residue interaction graphs with provable, ensemble-based algorithms to reap the benefits of sparse residue interaction graphs while avoiding their potential inaccuracies.

摘要

蛋白质设计算法会枚举大量组合的候选结构,以计算全局最小能量构象(GMEC)。为了有效地找到全局最小能量构象,蛋白质设计算法必须有条不紊地减少构象搜索空间。通过应用距离和能量截止值,待设计的蛋白质系统可以用稀疏残基相互作用图来表示,其中相互作用的残基对数量少于所有可变残基对,相应的全局最小能量构象称为稀疏全局最小能量构象。然而,忽略一些成对的残基相互作用可能会导致稀疏全局最小能量构象与原始或完整全局最小能量构象在能量、构象或序列上发生变化。尽管稀疏残基相互作用图在蛋白质设计中被广泛使用,但此前尚未对其使用所产生的上述影响进行分析。为了分析使用稀疏残基相互作用图进行设计的成本和收益,我们计算了136个不同蛋白质设计问题在有和没有距离及能量截止值情况下的全局最小能量构象,并比较了它们的能量、构象和序列。我们的分析表明,全局最小能量构象之间的差异关键取决于设计是否包括核心、边界或表面残基。此外,忽略长程相互作用会改变局部相互作用并引入较大的序列差异,这两者都可能导致显著的结构和功能变化。对具有实验测量热稳定性的蛋白质进行设计表明,准确且高效地计算完整和稀疏全局最小能量构象是有益的。为此,我们表明一种基于可证明的、整体的算法可以通过枚举少量构象(通常少于1000个)来有效地计算这两种全局最小能量构象。这提供了一种将稀疏残基相互作用图与基于可证明的、整体的算法相结合的新方法,以在避免潜在不准确性的同时获得稀疏残基相互作用图的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/5391103/cc69aa45df06/pcbi.1005346.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验