Tangaro Sabina, Amoroso Nicola, Brescia Massimo, Cavuoti Stefano, Chincarini Andrea, Errico Rosangela, Inglese Paolo, Longo Giuseppe, Maglietta Rosalia, Tateo Andrea, Riccio Giuseppe, Bellotti Roberto
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70125 Bari, Italy.
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70125 Bari, Italy ; Dipartimento Interateneo di Fisica, Università degli Studi di Bari, Via Amendola 173, 70126 Bari, Italy.
Comput Math Methods Med. 2015;2015:814104. doi: 10.1155/2015/814104. Epub 2015 May 18.
Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic resonance imaging (MRI) scans can show these variations and therefore can be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust, and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach; for each voxel a number of local features were calculated. In this paper, we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) sequential forward selection and (iii) sequential backward elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 feature for each voxel (sequential backward elimination) we obtained comparable state-of-the-art performances with respect to the standard tool FreeSurfer.
神经退行性疾病常与大脑结构变化相关。磁共振成像(MRI)扫描能够显示这些变化,因此可作为多种神经退行性疾病的辅助特征。海马体一直被认为是阿尔茨海默病以及其他神经和精神疾病的生物标志物。然而,这需要对海马体结构进行准确、可靠且可重复的描绘。全自动方法通常是基于体素的方法;对于每个体素,会计算许多局部特征。在本文中,我们比较了从为每个体素提取的315个特征集中进行特征选择的四种不同技术:(i)基于柯尔莫哥洛夫 - 斯米尔诺夫检验的过滤方法;两种包装方法,分别为(ii)顺序向前选择和(iii)顺序向后消除;以及(iv)基于随机森林分类器的嵌入式方法,使用了一组10个T1加权脑部MRI,并在一组25名独立受试者上进行测试。将所得分割结果与手动参考标记进行比较。通过为每个体素仅使用23个特征(顺序向后消除),我们获得了与标准工具FreeSurfer相当的最新性能。