Suppr超能文献

通过在枚举过程中纳入转录调控规则来避免枚举不可行的基本通量模式可节省计算成本。

Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs.

作者信息

Jungreuthmayer Christian, Ruckerbauer David E, Gerstl Matthias P, Hanscho Michael, Zanghellini Jürgen

机构信息

Austrian Centre of Industrial Biotechnology, Vienna, Austria, EU; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, EU.

出版信息

PLoS One. 2015 Jun 19;10(6):e0129840. doi: 10.1371/journal.pone.0129840. eCollection 2015.

Abstract

Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation dramatically reduces the solution space and allows the presented algorithm to constantly eliminate biologically infeasible modes at an early stage of the computation procedure. Thereby, computational costs, such as runtime, memory usage, and disk space, are extremely reduced. Moreover, we show that the application of transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the presented algorithm pushes the size of metabolic networks that can be studied by elementary flux modes to new and much higher limits without the loss of predictive quality. This makes unbiased, system-wide predictions in large scale metabolic networks possible without resorting to any optimization principle.

摘要

尽管近年来取得了重大进展,但计算大型甚至基因组规模代谢网络的完整基本通量模式集仍然是不可能的。我们引入了一种新方法,通过将转录调控信息纳入代谢网络分析来加速基本通量模式的计算。考虑基因调控极大地减少了解空间,并允许所提出的算法在计算过程的早期不断消除生物学上不可行的模式。从而,诸如运行时间、内存使用和磁盘空间等计算成本被极大地降低。此外,我们表明转录规则的应用识别出对代谢的非平凡全系统效应。使用所提出的算法将可通过基本通量模式研究的代谢网络规模推到了新的更高极限,而不会损失预测质量。这使得在不诉诸任何优化原则的情况下,在大规模代谢网络中进行无偏的全系统预测成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ad/4475075/50071a1a5355/pone.0129840.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验