Suppr超能文献

将集流体部分转化为用于高性能储能设备的镍铜氧化物电极材料。

Partial conversion of current collectors into nickel copper oxide electrode materials for high-performance energy storage devices.

作者信息

Zhang Liuyang, Gong Hao

机构信息

Department of Material Science and Engineering, National University of Singapore, Singapore 117576, Singapore.

出版信息

ACS Appl Mater Interfaces. 2015 Jul 22;7(28):15277-84. doi: 10.1021/acsami.5b02970. Epub 2015 Jul 8.

Abstract

A novel substrate sacrifice process is proposed and developed for converting part of a current collector into supercapacitor active materials, which provides a new route in achieving high energy density of supercapacitor device. Part of a copper foam current collector is successfully converted into highly porous nickel copper oxide electrode for light- and high-performance supercapacitors. Remarkably, this strategy circumvents the problem associated with poor contact interface between electrode and current collector. Meanwhile, the overall weight of the supercapacitor could be minimized. The charge transfer kinetics is improved while the advantage of the excellent mechanical properties of metal current collector is not traded off. By virtue of this unique current collector self-involved architecture, the material derived from the current collector manifests large areal capacitance of 3.13 F cm(-2) at a current density of 1 A g(-1). The capacitance can retain 2.97 F cm(-2) at a much higher density (4 A g(-1)). Only a small decay of 6.5% appears at 4 A g(-1) after 1600 cycles. The strategy reported here sheds light on new strategies in making additional use of the metal current collector. Furthermore, asymmetric supercapacitor using both solid-state gel electrolyte and liquid counterpart are obtained and analyzed. The liquid asymmetric supercapacitor can deliver a high energy density up to 0.5 mWh cm(-2) (53 Wh kg(-1)) at a power density of 13 mW cm(-2) (1.4 kW kg(-1)).

摘要

提出并开发了一种新颖的基底牺牲工艺,用于将部分集流体转化为超级电容器活性材料,这为实现超级电容器器件的高能量密度提供了一条新途径。成功地将部分泡沫铜集流体转化为用于轻型和高性能超级电容器的高孔隙率镍铜氧化物电极。值得注意的是,该策略规避了电极与集流体之间接触界面不良的问题。同时,超级电容器的整体重量可以最小化。电荷转移动力学得到改善,而不会牺牲金属集流体优异机械性能的优势。凭借这种独特的集流体自参与结构,源自集流体的材料在1 A g(-1)的电流密度下表现出3.13 F cm(-2)的大面电容。在更高的密度(4 A g(-1))下,电容可保持2.97 F cm(-2)。在1600次循环后,在4 A g(-1)时仅出现6.5%的小衰减。这里报道的策略为进一步利用金属集流体提供了新策略。此外,还制备并分析了使用固态凝胶电解质和液体电解质的非对称超级电容器。液体非对称超级电容器在13 mW cm(-2)(1.4 kW kg(-1))的功率密度下可提供高达0.5 mWh cm(-2)(53 Wh kg(-1))的高能量密度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验