Suppr超能文献

探索西班牙健康社交媒体以检测药物效果。

Exploring Spanish health social media for detecting drug effects.

作者信息

Segura-Bedmar Isabel, Martínez Paloma, Revert Ricardo, Moreno-Schneider Julián

出版信息

BMC Med Inform Decis Mak. 2015;15 Suppl 2(Suppl 2):S6. doi: 10.1186/1472-6947-15-S2-S6. Epub 2015 Jun 15.

Abstract

BACKGROUND

Adverse Drug reactions (ADR) cause a high number of deaths among hospitalized patients in developed countries. Major drug agencies have devoted a great interest in the early detection of ADRs due to their high incidence and increasing health care costs. Reporting systems are available in order for both healthcare professionals and patients to alert about possible ADRs. However, several studies have shown that these adverse events are underestimated. Our hypothesis is that health social networks could be a significant information source for the early detection of ADRs as well as of new drug indications.

METHODS

In this work we present a system for detecting drug effects (which include both adverse drug reactions as well as drug indications) from user posts extracted from a Spanish health forum. Texts were processed using MeaningCloud, a multilingual text analysis engine, to identify drugs and effects. In addition, we developed the first Spanish database storing drugs as well as their effects automatically built from drug package inserts gathered from online websites. We then applied a distant-supervision method using the database on a collection of 84,000 messages in order to extract the relations between drugs and their effects. To classify the relation instances, we used a kernel method based only on shallow linguistic information of the sentences.

RESULTS

Regarding Relation Extraction of drugs and their effects, the distant supervision approach achieved a recall of 0.59 and a precision of 0.48.

CONCLUSIONS

The task of extracting relations between drugs and their effects from social media is a complex challenge due to the characteristics of social media texts. These texts, typically posts or tweets, usually contain many grammatical errors and spelling mistakes. Moreover, patients use lay terminology to refer to diseases, symptoms and indications that is not usually included in lexical resources in languages other than English.

摘要

背景

在发达国家,药物不良反应(ADR)导致大量住院患者死亡。由于其高发病率和不断增加的医疗保健成本,主要药物机构对ADR的早期检测投入了极大关注。报告系统可供医疗保健专业人员和患者使用,以便提醒可能的ADR。然而,多项研究表明,这些不良事件被低估了。我们的假设是,健康社交网络可能是ADR以及新药适应症早期检测的重要信息来源。

方法

在这项工作中,我们提出了一个从西班牙健康论坛提取的用户帖子中检测药物效应(包括药物不良反应以及药物适应症)的系统。使用多语言文本分析引擎MeaningCloud处理文本,以识别药物和效应。此外,我们开发了第一个西班牙语数据库,该数据库存储从在线网站收集的药品说明书中自动构建的药物及其效应。然后,我们使用该数据库对84000条消息的集合应用远距离监督方法,以提取药物与其效应之间的关系。为了对关系实例进行分类,我们使用了一种仅基于句子浅层语言信息的核方法。

结果

关于药物及其效应的关系提取,远距离监督方法的召回率为0.59,精确率为0.48。

结论

由于社交媒体文本的特性,从社交媒体中提取药物与其效应之间的关系是一项复杂的挑战。这些文本,通常是帖子或推文,通常包含许多语法错误和拼写错误。此外,患者使用通俗术语来指代疾病、症状和适应症,而这些术语通常不包括在英语以外语言的词汇资源中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/4474583/6744f96f8177/1472-6947-15-S2-S6-1.jpg

相似文献

1
Exploring Spanish health social media for detecting drug effects.
BMC Med Inform Decis Mak. 2015;15 Suppl 2(Suppl 2):S6. doi: 10.1186/1472-6947-15-S2-S6. Epub 2015 Jun 15.
2
Filtering big data from social media--Building an early warning system for adverse drug reactions.
J Biomed Inform. 2015 Apr;54:230-40. doi: 10.1016/j.jbi.2015.01.011. Epub 2015 Feb 14.
3
Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
J Biomed Inform. 2015 Feb;53:196-207. doi: 10.1016/j.jbi.2014.11.002. Epub 2014 Nov 8.
5
On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions.
J Biomed Inform. 2015 Aug;56:318-32. doi: 10.1016/j.jbi.2015.06.016. Epub 2015 Jun 30.
6
An ensemble method for extracting adverse drug events from social media.
Artif Intell Med. 2016 Jun;70:62-76. doi: 10.1016/j.artmed.2016.05.004. Epub 2016 Jun 6.
7
Utilizing social media data for pharmacovigilance: A review.
J Biomed Inform. 2015 Apr;54:202-12. doi: 10.1016/j.jbi.2015.02.004. Epub 2015 Feb 23.
8
From narrative descriptions to MedDRA: automagically encoding adverse drug reactions.
J Biomed Inform. 2018 Aug;84:184-199. doi: 10.1016/j.jbi.2018.07.001. Epub 2018 Jul 4.
9
Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):335. doi: 10.1186/s12859-016-1220-5.
10
SOCIAL MEDIA MINING SHARED TASK WORKSHOP.
Pac Symp Biocomput. 2016;21:581-92.

引用本文的文献

1
Hybrid natural language processing tool for semantic annotation of medical texts in Spanish.
BMC Bioinformatics. 2025 Jan 8;26(1):7. doi: 10.1186/s12859-024-05949-6.
2
MedLexSp - a medical lexicon for Spanish medical natural language processing.
J Biomed Semantics. 2023 Feb 2;14(1):2. doi: 10.1186/s13326-022-00281-5.
3
Automatic gender detection in Twitter profiles for health-related cohort studies.
JAMIA Open. 2021 Jun 23;4(2):ooab042. doi: 10.1093/jamiaopen/ooab042. eCollection 2021 Apr.
4
A clinical trials corpus annotated with UMLS entities to enhance the access to evidence-based medicine.
BMC Med Inform Decis Mak. 2021 Feb 22;21(1):69. doi: 10.1186/s12911-021-01395-z.
8
HARNESSING SOCIAL MEDIA FOR HEALTH INFORMATION MANAGEMENT.
Electron Commer Res Appl. 2018 Jan-Feb;27:139-151. doi: 10.1016/j.elerap.2017.12.003. Epub 2017 Dec 29.
9
Utility of social media and crowd-intelligence data for pharmacovigilance: a scoping review.
BMC Med Inform Decis Mak. 2018 Jun 14;18(1):38. doi: 10.1186/s12911-018-0621-y.

本文引用的文献

1
Towards Large-scale Twitter Mining for Drug-related Adverse Events.
SHB12 (2012). 2012 Oct 29;2012:25-32. doi: 10.1145/2389707.2389713.
2
LESSONS LEARNED ABOUT PUBLIC HEALTH FROM ONLINE CROWD SURVEILLANCE.
Big Data. 2013 Sep 10;1(3):160-167. doi: 10.1089/big.2013.0020.
3
Automatic detection of adverse events to predict drug label changes using text and data mining techniques.
Pharmacoepidemiol Drug Saf. 2013 Nov;22(11):1189-94. doi: 10.1002/pds.3493. Epub 2013 Aug 12.
5
Mining FDA drug labels for medical conditions.
BMC Med Inform Decis Mak. 2013 Apr 24;13:53. doi: 10.1186/1472-6947-13-53.
6
Extraction of potential adverse drug events from medical case reports.
J Biomed Semantics. 2012 Dec 20;3(1):15. doi: 10.1186/2041-1480-3-15.
7
Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports.
J Biomed Inform. 2012 Oct;45(5):885-92. doi: 10.1016/j.jbi.2012.04.008. Epub 2012 Apr 25.
8
The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships.
J Biomed Inform. 2012 Oct;45(5):879-84. doi: 10.1016/j.jbi.2012.04.004. Epub 2012 Apr 25.
9
10
Drug side effect extraction from clinical narratives of psychiatry and psychology patients.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i144-9. doi: 10.1136/amiajnl-2011-000351. Epub 2011 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验