CTP, Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
1] Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA [2] Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA [3] Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Nat Commun. 2015 Jun 23;6:7406. doi: 10.1038/ncomms8406.
Symmetry-breaking phase transitions are an example of non-equilibrium processes that require real-time treatment, a major challenge in strongly coupled systems without long-lived quasiparticles. Holographic duality provides such an approach by mapping strongly coupled field theories in D dimensions into weakly coupled quantum gravity in D+1 anti-de Sitter spacetime. Here we use holographic duality to study the formation of topological defects-winding numbers-in the course of a superconducting transition in a strongly coupled theory in a 1D ring. When the system undergoes the transition on a given quench time, the condensate builds up with a delay that can be deduced using the Kibble-Zurek mechanism from the quench time and the universality class of the theory, as determined from the quasinormal mode spectrum of the dual model. Typical winding numbers deposited in the ring exhibit a universal fractional power law dependence on the quench time, also predicted by the Kibble-Zurek Mechanism.
对称破缺相变是一种非平衡过程的例子,需要实时处理,这对于没有长寿命准粒子的强耦合系统来说是一个重大挑战。全息对偶性通过将 D 维强耦合场论映射到 D+1 反德西特时空中的弱耦合量子引力,提供了这样一种方法。在这里,我们使用全息对偶性来研究在 D 维强耦合理论的超导转变过程中拓扑缺陷——缠绕数的形成。当系统在给定的淬火时间内发生转变时,凝聚体的形成会有延迟,这可以使用 Kibble-Zurek 机制从淬火时间和理论的普遍性类别中推断出来,这是由对偶模型的准正则模谱确定的。在环中沉积的典型缠绕数与淬火时间呈普适的分数幂律关系,这也被 Kibble-Zurek 机制所预测。