Suppr超能文献

一种阳离子半胱氨酸酰肼作为用于细菌游离寡糖质谱表征的富集工具。

A cationic cysteine-hydrazide as an enrichment tool for the mass spectrometric characterization of bacterial free oligosaccharides.

作者信息

Jang Kyoung-Soon, Nani Roger R, Kalli Anastasia, Levin Sergiy, Müller Axel, Hess Sonja, Reisman Sarah E, Clemons William M

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, M/C 114-96 1200 E California Blvd, Pasadena, CA, 91125, USA.

出版信息

Anal Bioanal Chem. 2015 Aug;407(20):6181-90. doi: 10.1007/s00216-015-8798-8. Epub 2015 Jun 23.

Abstract

In Campylobacterales and related ε-proteobacteria with N-linked glycosylation (NLG) pathways, free oligosaccharides (fOS) are released into the periplasmic space from lipid-linked precursors by the bacterial oligosaccharyltransferase (PglB). This hydrolysis results in the same molecular structure as the oligosaccharide that is transferred to a protein to be glycosylated. This allowed for the general elucidation of the fOS-branched structures and monosaccharides from a number of species using standard enrichment and mass spectrometry methods. To aid characterization of fOS, hydrazide chemistry has often been used for chemical modification of the reducing part of oligosaccharides resulting in better selectivity and sensitivity in mass spectrometry; however, the removal of the unreacted reagents used for the modification often causes the loss of the sample. Here, we develop a more robust method for fOS purification and characterize glycostructures using complementary tandem mass spectrometry (MS/MS) analysis. A cationic cysteine hydrazide derivative was synthesized to selectively isolate fOS from periplasmic fractions of bacteria. The cysteine hydrazide nicotinamide (Cyhn) probe possesses both thiol and cationic moieties. The former enables reversible conjugation to a thiol-activated solid support, while the latter improves the ionization signal during MS analysis. This enrichment was validated on the well-studied Campylobacter jejuni by identifying fOS from the periplasmic extracts. Using complementary MS/MS analysis, we approximated data of a known structure of the fOS from Campylobacter concisus. This versatile enrichment technique allows for the exploration of a diversity of protein glycosylation pathways.

摘要

在具有N-连接糖基化(NLG)途径的弯曲杆菌目及相关的ε-变形菌中,游离寡糖(fOS)通过细菌寡糖基转移酶(PglB)从脂质连接的前体释放到周质空间。这种水解产生的分子结构与转移到待糖基化蛋白质上的寡糖相同。这使得使用标准富集和质谱方法能够普遍阐明多种物种的fOS分支结构和单糖。为了辅助fOS的表征,酰肼化学常常被用于寡糖还原部分的化学修饰,从而在质谱分析中实现更好的选择性和灵敏度;然而,用于修饰的未反应试剂的去除常常导致样品损失。在此,我们开发了一种更稳健的fOS纯化方法,并使用互补串联质谱(MS/MS)分析来表征糖结构。合成了一种阳离子半胱氨酸酰肼衍生物,以从细菌周质组分中选择性分离fOS。半胱氨酸酰肼烟酰胺(Cyhn)探针同时具有硫醇和阳离子部分。前者能够与硫醇活化的固体支持物进行可逆偶联,而后者则能改善质谱分析期间的电离信号。通过从周质提取物中鉴定fOS,在深入研究的空肠弯曲菌上验证了这种富集方法。使用互补MS/MS分析,我们估算了简明弯曲菌中fOS已知结构的数据。这种通用的富集技术有助于探索多种蛋白质糖基化途径。

相似文献

1
A cationic cysteine-hydrazide as an enrichment tool for the mass spectrometric characterization of bacterial free oligosaccharides.
Anal Bioanal Chem. 2015 Aug;407(20):6181-90. doi: 10.1007/s00216-015-8798-8. Epub 2015 Jun 23.
3
Campylobacter jejuni free oligosaccharides: function and fate.
Virulence. 2010 Nov-Dec;1(6):546-50. doi: 10.4161/viru.1.6.13801. Epub 2010 Nov 1.
5
Generation of free oligosaccharides from bacterial protein N-linked glycosylation systems.
Biopolymers. 2013 Oct;99(10):772-83. doi: 10.1002/bip.22296.
8
Study of free oligosaccharides derived from the bacterial N-glycosylation pathway.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15019-24. doi: 10.1073/pnas.0903078106. Epub 2009 Aug 14.

引用本文的文献

1
MS-based glycomics: An analytical tool to assess nervous system diseases.
Front Neurosci. 2022 Nov 3;16:1000179. doi: 10.3389/fnins.2022.1000179. eCollection 2022.
2
Resin and Magnetic Nanoparticle-Based Free Radical Probes for Glycan Capture, Isolation, and Structural Characterization.
Anal Chem. 2019 Dec 17;91(24):15387-15396. doi: 10.1021/acs.analchem.9b01303. Epub 2019 Nov 25.

本文引用的文献

1
Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni.
Microbiologyopen. 2014 Oct;3(5):702-10. doi: 10.1002/mbo3.200. Epub 2014 Jul 25.
2
Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni.
J Proteomics. 2014 Feb 26;98:90-8. doi: 10.1016/j.jprot.2013.12.014. Epub 2013 Dec 29.
3
Energy deposition during electron-induced dissociation.
J Am Soc Mass Spectrom. 1993 Feb;4(2):145-51. doi: 10.1016/1044-0305(93)85070-E.
4
Diversity in the protein N-glycosylation pathways within the Campylobacter genus.
Mol Cell Proteomics. 2012 Nov;11(11):1203-19. doi: 10.1074/mcp.M112.021519. Epub 2012 Aug 2.
5
An engineered eukaryotic protein glycosylation pathway in Escherichia coli.
Nat Chem Biol. 2012 Mar 25;8(5):434-6. doi: 10.1038/nchembio.921.
6
Characterization of the structurally diverse N-linked glycans of Campylobacter species.
J Bacteriol. 2012 May;194(9):2355-62. doi: 10.1128/JB.00042-12. Epub 2012 Mar 2.
8
Electron induced dissociation of singly deprotonated peptides.
J Am Soc Mass Spectrom. 2011 Dec;22(12):2209-21. doi: 10.1007/s13361-011-0233-6. Epub 2011 Sep 20.
10
Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo.
Glycobiology. 2011 Jan;21(1):45-54. doi: 10.1093/glycob/cwq130. Epub 2010 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验