Suppr超能文献

滴水电导率作为事件尺度洞穴通风的指示指标。

Drip water electrical conductivity as an indicator of cave ventilation at the event scale.

机构信息

Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom; NERC Isotope Geosciences Facility, British Geological Survey, Nottingham NG12 5GG, United Kingdom.

Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.

出版信息

Sci Total Environ. 2015 Nov 1;532:517-27. doi: 10.1016/j.scitotenv.2015.06.037. Epub 2015 Jun 19.

Abstract

The use of speleothems to reconstruct past climatic and environmental change through chemical proxies is becoming increasingly common. Speleothem chemistry is controlled by hydrological and atmospheric processes which vary over seasonal time scales. However, as many reconstructions using speleothem carbonate are now endeavouring to acquire information about precipitation and temperature dynamics at a scale that can capture short term hydrological events, our understanding of within cave processes must match this resolution. Monitoring within Cueva de Asiul (N. Spain) has identified rapid (hourly resolution) changes in drip water electrical conductivity (EC), which is regulated by the pCO2 in the cave air. Drip water EC is therefore controlled by different modes of cave ventilation. In Cueva de Asiul a combination of density differences, and external pressure changes control ventilation patterns. Density driven changes in cave ventilation occur on a diurnal scale at this site irrespective of season, driven by fluctuations in external temperature across the cave internal temperature threshold. As external temperatures drop below those within the cave low pCO2 external air enters the void, facilitating the deposition of speleothem carbonate and causing a reduction in measured drip water EC. Additionally, decreases in external pressure related to storm activity act as a secondary ventilation mechanism. Reductions in external air pressure cause a drop in cave air pressure, enhancing karst air draw down, increasing the pCO2 of the cave and therefore the EC measured within drip waters. EC thereby serves as a first order indicator of cave ventilation, regardless of changes in speleothem drip rates and karst hydrological conditions. High resolution monitoring of cave drip water electrical conductivity reveals the highly sensitive nature of ventilation dynamics within cave environments, and highlights the importance of this for understanding trace element incorporation into speleothem carbonate at the event scale.

摘要

利用洞穴石笋通过化学示踪剂来重建过去的气候和环境变化,这种方法正变得越来越普遍。洞穴石笋的化学性质受水文和大气过程的控制,这些过程在季节时间尺度上变化。然而,由于许多使用洞穴石笋碳酸盐的重建工作现在都在努力获取有关降水和温度动态的信息,其时间尺度可以捕捉短期水文事件,因此我们对洞穴内过程的理解必须与之相匹配。对西班牙北部的阿西乌洞穴(Cueva de Asiul)的监测已经确定了滴水电导率(EC)的快速(每小时分辨率)变化,而滴水电导率是由洞穴空气中的 pCO2 调节的。因此,滴水 EC 受到不同的洞穴通风模式的控制。在阿西乌洞穴中,密度差异和外部压力变化的组合控制着通风模式。在这个地点,无论季节如何,密度驱动的洞穴通风变化都以日周期发生,这是由洞穴内部温度阈值外的外部温度波动驱动的。当外部温度下降到低于洞穴内温度时,低 pCO2 的外部空气进入空洞,促进了洞穴石笋碳酸盐的沉积,并导致测量的滴水 EC 减少。此外,与风暴活动相关的外部压力下降充当次要通风机制。外部气压的降低会导致洞穴气压下降,增强喀斯特空气抽吸,增加洞穴中的 pCO2,从而增加滴水内测量的 EC。因此,EC 是洞穴通风的第一级指标,而与洞穴石笋滴水率和喀斯特水文条件的变化无关。对洞穴滴水电导率的高分辨率监测揭示了洞穴环境中通风动态的高度敏感性,并强调了这对于理解微量元素在事件尺度上掺入洞穴石笋碳酸盐的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验